Files
FastDeploy/fastdeploy/engine/config.py
luukunn 132a8ef425 Release/2.1 (#3414)
* Pre ce modified (#3335) (#3360)

* Pre ce modified (#3335)

* update

* update

* fix

* fix

* update

* update

* update

* fix

* update

* update

* update

* add ut fix pr(3367)

* [Bug Fix] Fix V1 video bug (#3387)

* fix stopseq error info (#3342)

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>

* [BugFix] Fix default log level of paddleformers (#3377)

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>

* [Polish Code] Remove useless notes

* feat(log):add_request_and_response_log (#3392)

* Optimize CI execution workflow. (#3371) (#3384)

* fix

* [BugFix] fix control signal release failed (#3374)

* [BugFix]

* [BugFix]

* [BugFix]

* [BugFix]

* fix

* fix

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>

* Revert "Merge branch 'feature/online/vs_think_20250813' into release/2.1"

This reverts commit 02596fc537, reversing
changes made to 03347626a6.

* [XPU] Fixed the issue of performance degradation caused by enabling ENABLE_V1_KVCACHE_SCHEDULER (#3393)

* fix v1 schedule oom bug

* fix v1 schedule oom bug

* [BugFix] fix ErnieProcessor not set raw_prediction (#3401)

* [Doc]Release fastdeploy-xpu 2.1.0 (#3407)

* fix v1 schedule oom bug

* fix v1 schedule oom bug

* update release note

* [Doc]Release fastdeploy-xpu 2.0.3  (#3408)

* fix v1 schedule oom bug

* fix v1 schedule oom bug

* update release note

* update info

---------

Co-authored-by: YUNSHEN XIE <1084314248@qq.com>
Co-authored-by: ming1753 <61511741+ming1753@users.noreply.github.com>
Co-authored-by: JYChen <zoooo0820@qq.com>
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <jiangjiajun@baidu.com>
Co-authored-by: xiaolei373 <zley373@gmail.com>
Co-authored-by: ltd0924 <32387785+ltd0924@users.noreply.github.com>
Co-authored-by: yinwei <yinwei_hust@163.com>
Co-authored-by: memoryCoderC <1137889088@qq.com>
2025-08-14 20:53:47 +08:00

428 lines
19 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import json
import os
from datetime import datetime
from typing import Any, Dict, List, Optional
from fastdeploy.config import (
CacheConfig,
CommitConfig,
LoadConfig,
ModelConfig,
ParallelConfig,
)
from fastdeploy.platforms import current_platform
from fastdeploy.scheduler import SchedulerConfig
from fastdeploy.utils import ceil_div, get_host_ip, is_port_available, llm_logger
class Config:
"""
Initial configuration class.
Attributes:
model_config (ModelConfig): Model configuration object.
cache_config (CacheConfig): Cache configuration object.
model_name_or_path (str): Directory path to the model or the model name.
tokenizer (Optional[str]): Default is the model.
max_num_batched_tokens (Optional[int]): Maximum number of batched tokens.
tensor_parallel_size (int): Tensor parallel size.
nnode (int): Number of nodes.
max_model_len (int): Maximum model length. Default is 8192.
max_num_seqs (int): Maximum number of sequences. Default is 8.
mm_processor_kwargs (Optional[Dict[str, Any]]): Additional arguments for multi-modal processor.
speculative_config (Optional[Dict[str, Any]]): Speculative execution configuration.
use_warmup (bool): Flag to use warmup.
engine_worker_queue_port (int): Port for engine worker queue.
enable_mm (bool): Flag to enable multi-modal processing.
reasoning_parser(str): Flag specifies the reasoning parser to use for
extracting reasoning content from the model output
splitwise_role (str): Splitwise role.
innode_prefill_ports (Optional[List[int]]): Innode prefill ports.
Temporary configuration, will be removed in the future.
load_choices(str):The format of the model weights to load. .Default is default
"""
def __init__(
self,
model_config: ModelConfig,
cache_config: CacheConfig,
scheduler_config: SchedulerConfig,
parallel_config: ParallelConfig,
load_config: LoadConfig,
commit_config: CommitConfig = CommitConfig(),
model_name_or_path: str = None,
tokenizer: str = None,
tensor_parallel_size: int = 8,
max_model_len: int = 8192,
max_num_seqs: int = 8,
max_num_batched_tokens: Optional[int] = None,
ips: str = None,
speculative_config: Optional[Dict[str, Any]] = None,
graph_optimization_config: Optional[Dict[str, Any]] = None,
use_warmup: bool = False,
engine_worker_queue_port: int = 8002,
limit_mm_per_prompt: Optional[Dict[str, Any]] = None,
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
enable_mm: bool = False,
splitwise_role: str = "mixed",
innode_prefill_ports: Optional[List[int]] = None,
max_num_partial_prefills: int = 1,
max_long_partial_prefills: int = 1,
long_prefill_token_threshold: int = 0,
reasoning_parser: str = None,
guided_decoding_backend: Optional[str] = None,
disable_any_whitespace: bool = False,
enable_logprob: bool = False,
early_stop_config: Optional[Dict[str, Any]] = None,
load_choices: str = "default",
):
"""
Initialize the Config class.
Args:
model_config (ModelConfig): Model configuration object.
cache_config (CacheConfig): Cache configuration object.
parallel_config (ParallelConfig): Parallel configuration object.
scheduler_config (SchedulerConfig): Scheduler configuration object.
model_name_or_path (str): Model directory path or model name.
tokenizer (str): Default is the model.
tensor_parallel_size (int): Tensor parallel size. Default is 8.
max_model_len (int): Maximum model length. Default is 8192.
max_num_seqs (int): Maximum number of sequences. Default is 8.
max_num_batched_tokens (Optional[int]): Maximum number of batched tokens. Default is None.
mm_processor_kwargs (Optional[Dict[str, Any]]): Additional arguments for multi-modal processor. Default is None.
speculative_config (Optional[Dict[str, Any]]): Speculative execution configuration. Default is None.
graph_optimization_config (Optional[Dict[str, Any]]): Graph optimizaion backend execution configuration. Default is None.
use_warmup (bool): Flag to use warmup. Default is False.
engine_worker_queue_port (int): Engine worker queue port. Default is 8002.
enable_mm (bool): Flag to enable multi-modal processing. Default is False.
splitwise_role (str): Splitwise role. Default is "mixed".
innode_prefill_ports (Optional[List[int]]): Innode prefill ports. Default is None.
reasoning_parser (str): Flag specifies the reasoning parser to use for
extracting reasoning content from the model output. Default is None.
guided_decoding_backend(str): Guided decoding backend. Default is None.
disable_any_whitespace(bool): Disable any whitespace when using guided decoding.
Default is False.
enable_logprob(bool): Enable logprob. Default is False.
early_stop_config (Optional[Dict[str, Any]]): Early stop configuration. Default is None.
load_choices(str):The format of the model weights to load. .Default is default
"""
self.model_config = model_config
self.cache_config = cache_config
self.scheduler_config = scheduler_config
self.parallel_config = parallel_config
self.load_config = load_config
self.commit_config = commit_config
self.model_name_or_path = model_name_or_path
self.tokenizer = tokenizer
self.max_num_batched_tokens = max_num_batched_tokens
self.tensor_parallel_size = tensor_parallel_size
self.ips = ips
if self.ips is None:
self.master_ip = "0.0.0.0"
elif isinstance(self.ips, list):
self.master_ip = self.ips[0]
else:
self.ips = self.ips.split(",")
self.master_ip = self.ips[0]
if self.ips is None:
self.nnode = 1
self.node_rank = 0
else:
self.nnode = len(self.ips)
for idx, ip in enumerate(self.ips):
if ip == self.master_ip:
self.node_rank = idx
self.max_model_len = max_model_len
self.max_num_seqs = max_num_seqs
self.limit_mm_per_prompt = limit_mm_per_prompt
self.mm_processor_kwargs = mm_processor_kwargs
self.enable_mm = enable_mm
self.speculative_config = speculative_config
self.use_warmup = use_warmup
self.splitwise_role = splitwise_role
self.innode_prefill_ports = innode_prefill_ports
self.max_num_partial_prefills = max_num_partial_prefills
self.max_long_partial_prefills = max_long_partial_prefills
self.long_prefill_token_threshold = long_prefill_token_threshold
self.reasoning_parser = reasoning_parser
self.graph_optimization_config = graph_optimization_config
self.early_stop_config = early_stop_config
self.guided_decoding_backend = guided_decoding_backend
self.disable_any_whitespace = disable_any_whitespace
self._str_to_list("innode_prefill_ports", int)
self.load_choices = load_choices
assert self.splitwise_role in ["mixed", "prefill", "decode"]
# TODO
self.max_prefill_batch = 3
if current_platform.is_xpu():
self.max_prefill_batch = 1
if enable_mm:
self.max_prefill_batch = 1 # TODO:当前多模prefill阶段只支持并行度为1,待优化
# TODO(@wufeisheng): TP and EP need to be supported simultaneously.
assert (self.tensor_parallel_size == 1 and self.parallel_config.expert_parallel_size >= 1) or (
self.tensor_parallel_size >= 1 and self.parallel_config.expert_parallel_size == 1
), "TP and EP cannot be enabled at the same time"
num_ranks = self.tensor_parallel_size * self.parallel_config.expert_parallel_size
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
if num_ranks > self.max_chips_per_node:
self.worker_num_per_node = self.max_chips_per_node
nnode = ceil_div(num_ranks, self.worker_num_per_node)
assert nnode == self.nnode, f"nnode: {nnode}, but got {self.nnode}"
else:
self.worker_num_per_node = num_ranks
self.engine_worker_queue_port = engine_worker_queue_port
self.device_ids = ",".join([str(i) for i in range(self.worker_num_per_node)])
self.device_ids = os.getenv("CUDA_VISIBLE_DEVICES", self.device_ids)
if current_platform.is_xpu():
self.device_ids = os.getenv("XPU_VISIBLE_DEVICES", self.device_ids)
self.enable_logprob = enable_logprob
self.read_from_config()
self.postprocess()
self.check()
self.print()
def postprocess(self):
"""
calculate some parameters
"""
assert (
self.device_ids.split(",").__len__() == self.worker_num_per_node
), f"invalid CUDA_VISIBLE_DEVICES, should be equal to {self.worker_num_per_node}"
self.local_device_ids = self.device_ids.split(",")[: self.tensor_parallel_size]
self.host_ip = get_host_ip()
if self.ips is None or self.host_ip == self.master_ip:
self.is_master = True
else:
self.is_master = False
if self.tensor_parallel_size <= self.worker_num_per_node:
self.is_master = True
import paddle
self.paddle_commit_id = paddle.version.commit
if self.max_num_batched_tokens is None:
if self.cache_config.enable_chunked_prefill:
self.max_num_batched_tokens = 2048
else:
if not int(os.getenv("ENABLE_V1_KVCACHE_SCHEDULER", "0")):
self.max_num_batched_tokens = self.max_model_len
else:
if paddle.is_compiled_with_xpu():
self.max_num_batched_tokens = self.max_model_len
else:
self.max_num_batched_tokens = 8192
if self.long_prefill_token_threshold == 0:
self.long_prefill_token_threshold = int(self.max_model_len * 0.04)
self.cache_config.postprocess(self.max_num_batched_tokens, self.max_num_seqs)
self.cache_config.max_block_num_per_seq = int(self.max_model_len // self.cache_config.block_size)
if self.guided_decoding_backend == "auto":
if self.enable_mm:
self.guided_decoding_backend = "off"
else:
self.guided_decoding_backend = "xgrammar"
def check(self):
"""
check the legality of config
"""
assert self.max_num_seqs <= 256, (
"The parameter `max_num_seqs` is not allowed to exceed 256, " f"but now it's {self.max_num_seqs}."
)
assert is_port_available(
"0.0.0.0", self.engine_worker_queue_port
), f"The parameter `engine_worker_queue_port`:{self.engine_worker_queue_port} is already in use."
assert self.nnode >= 1, f"nnode: {self.nnode} should no less than 1"
assert self.max_model_len >= 16, f"max_model_len: {self.max_model_len} should be larger than 16"
assert self.max_num_seqs >= 1, f"max_num_seqs: {self.max_num_seqs} should be larger than 1"
assert self.max_num_batched_tokens >= self.max_num_seqs, (
f"max_num_batched_tokens: {self.max_num_batched_tokens} "
f"should be larger than or equal to max_num_seqs: {self.max_num_seqs}"
)
assert self.max_num_batched_tokens <= self.max_model_len * self.max_num_seqs, (
f"max_num_batched_tokens: {self.max_num_batched_tokens} should be larger"
f"than or equal to max_num_seqs: {self.max_num_seqs} * max_model_len: {self.max_model_len}"
)
assert (
self.max_num_partial_prefills >= 1
), f"max_num_partial_prefills: {self.max_num_partial_prefills} should be larger than or equal to 1"
assert (
self.max_long_partial_prefills >= 1
), f"max_long_partial_prefills: {self.max_long_partial_prefills} should be larger than or equal to 1"
assert self.max_long_partial_prefills <= self.max_num_partial_prefills, (
f"max_long_partial_prefills: {self.max_long_partial_prefills} should "
f"be less than or equal to max_num_partial_prefills: {self.max_num_partial_prefills}"
)
if not self.cache_config.enable_chunked_prefill:
if not int(os.getenv("ENABLE_V1_KVCACHE_SCHEDULER", "0")):
assert self.max_num_batched_tokens >= self.max_model_len, (
f"max_num_batched_tokens: {self.max_num_batched_tokens} "
f"should be larger than or equal to max_model_len: {self.max_model_len}"
)
else:
assert self.max_num_batched_tokens >= self.cache_config.block_size, (
f"max_num_batched_tokens: {self.max_num_batched_tokens} "
f"should be larger than or equal to block_size: {self.cache_config.block_size}"
)
if self.max_num_partial_prefills > 1:
assert (
self.cache_config.enable_chunked_prefill is True
), "Chunked prefill must be enabled to set max_num_partial_prefills > 1"
assert self.long_prefill_token_threshold < self.max_model_len, (
f"long_prefill_token_threshold: {self.long_prefill_token_threshold} should be less than"
f" max_model_len: {self.max_model_len}"
)
if self.guided_decoding_backend is not None:
assert self.guided_decoding_backend in [
"xgrammar",
"XGrammar",
"auto",
"off",
], f"Only support xgrammar、auto guided decoding backend, but got {self.guided_decoding_backend}."
if self.guided_decoding_backend != "off":
# TODO: mm support guided_decoding
assert self.enable_mm is False, "Multimodal model currently do not support guided_decoding"
# TODO: speculative decoding support guided_decoding
# TODO: xpu support guided_decoding
assert not current_platform.is_xpu(), "XPU currently do not support guided_decoding"
try:
import xgrammar # noqa
except Exception as e:
raise Exception(
f"import XGrammar failed, please install XGrammar use `pip install xgrammar==0.1.19`. \n\t {e}"
)
self.scheduler_config.check()
def print(self, file=None):
"""
print all config
Args:
file (str): the path of file to save config
"""
llm_logger.info("=================== Configuration Information ===============")
for k, v in self.__dict__.items():
if k == "generation_config" and v is not None:
for gck, gcv in v.to_dict().items():
llm_logger.info("{:<20}:{:<6}{}".format(gck, "", gcv))
elif (
k == "cache_config"
or k == "model_config"
or k == "scheduler_config"
or k == "parallel_config"
or k == "commit_config"
):
v.print()
else:
llm_logger.info("{:<20}:{:<6}{}".format(k, "", v))
llm_logger.info("=============================================================")
if file is not None:
f = open(file, "a")
now_time = datetime.now()
f.write(f"{now_time} configuration information as below,\n")
for k, v in self.__dict__.items():
f.write("{:<20}:{:<6}{}\n".format(k, "", v))
f.close()
def init_cache_info(self):
"""
initialize cache info
"""
disaggregate_info = {}
if self.splitwise_role != "mixed":
disaggregate_info["role"] = self.splitwise_role
disaggregate_info["cache_info"] = dict()
current_protocol = self.cache_config.cache_transfer_protocol.split(",")
disaggregate_info["transfer_protocol"] = current_protocol
for protocol in current_protocol:
if protocol == "ipc":
disaggregate_info["cache_info"][protocol] = {
"ip": self.host_ip,
"port": self.engine_worker_queue_port,
"device_ids": self.local_device_ids,
}
elif protocol == "rdma":
disaggregate_info["cache_info"][protocol] = {
"ip": self.host_ip,
"port": self.cache_config.pd_comm_port[0],
"rdma_port": self.cache_config.rdma_comm_ports,
}
self.disaggregate_info = disaggregate_info
llm_logger.info(f"disaggregate_info: {self.disaggregate_info}")
def read_from_config(self):
"""
reset model config from json file
"""
def reset_value(cls, value_name, key):
if hasattr(cls, key):
value = getattr(cls, key)
setattr(cls, value_name, value)
llm_logger.info(f"Reset parameter {value_name} = {value} from configuration.")
reset_value(self.cache_config, "block_size", "infer_model_block_size")
reset_value(
self.model_config,
"return_full_hidden_states",
"return_full_hidden_states",
)
reset_value(self.cache_config, "cache_dtype", "infer_model_dtype")
def _check_master(self):
return self.is_master
def _str_to_list(self, attr_name, default_type):
if hasattr(self, attr_name):
val = getattr(self, attr_name)
if type(val) is str:
setattr(self, attr_name, [default_type(i) for i in val.split(",")])
else:
setattr(self, attr_name, val)
def __str__(self) -> str:
return json.dumps(self.__dict__, indent=4)