mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
81 lines
2.3 KiB
Python
81 lines
2.3 KiB
Python
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
from fastdeploy import ModelFormat
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--model", required=True, help="Path of yolov6 onnx model.")
|
||
parser.add_argument(
|
||
"--image", required=True, help="Path of test image file.")
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
default='cpu',
|
||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||
parser.add_argument(
|
||
"--backend",
|
||
type=str,
|
||
default="default",
|
||
help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu"
|
||
)
|
||
parser.add_argument(
|
||
"--device_id",
|
||
type=int,
|
||
default=0,
|
||
help="Define which GPU card used to run model.")
|
||
parser.add_argument(
|
||
"--cpu_thread_num",
|
||
type=int,
|
||
default=9,
|
||
help="Number of threads while inference on CPU.")
|
||
return parser.parse_args()
|
||
|
||
|
||
def build_option(args):
|
||
option = fd.RuntimeOption()
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu(0)
|
||
|
||
option.set_cpu_thread_num(args.cpu_thread_num)
|
||
|
||
if args.backend.lower() == "trt":
|
||
assert args.device.lower(
|
||
) == "gpu", "TensorRT backend require inference on device GPU."
|
||
option.use_trt_backend()
|
||
elif args.backend.lower() == "pptrt":
|
||
assert args.device.lower(
|
||
) == "gpu", "TensorRT backend require inference on device GPU."
|
||
option.use_trt_backend()
|
||
option.enable_paddle_to_trt()
|
||
elif args.backend.lower() == "ort":
|
||
option.use_ort_backend()
|
||
return option
|
||
|
||
|
||
args = parse_arguments()
|
||
|
||
model_file = os.path.join(args.model, "model.pdmodel")
|
||
params_file = os.path.join(args.model, "model.pdiparams")
|
||
# 配置runtime,加载模型
|
||
runtime_option = build_option(args)
|
||
model = fd.vision.detection.YOLOv6(
|
||
model_file,
|
||
params_file,
|
||
runtime_option=runtime_option,
|
||
model_format=ModelFormat.PADDLE)
|
||
|
||
# 预测图片检测结果
|
||
im = cv2.imread(args.image)
|
||
result = model.predict(im)
|
||
print(result)
|
||
|
||
# 预测结果可视化
|
||
vis_im = fd.vision.vis_detection(im, result)
|
||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||
print("Visualized result save in ./visualized_result.jpg")
|