Files
FastDeploy/fastdeploy/input/preprocess.py

135 lines
5.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Any, Dict, Optional
from fastdeploy.config import ErnieArchitectures, ModelConfig
from fastdeploy.entrypoints.openai.tool_parsers import ToolParserManager
from fastdeploy.reasoning import ReasoningParserManager
class InputPreprocessor:
"""
Args:
model_config (ModelConfig):
Model name or path to the pretrained model. If a model name is provided, it should be a
key in the Hugging Face Transformers' model registry (https://huggingface.co/models).
The model will be downloaded from the Hugging Face model hub if necessary.
If a path is provided, the model will be loaded from that path.
reasoning_parser (str, optional):
Reasoning parser type. Defaults to None.
Flag specifies the reasoning parser to use for extracting reasoning content from the model output
Raises:
ValueError:
If the model name is not found in the Hugging Face Transformers' model registry and the path does not
exist.
"""
def __init__(
self,
model_config: ModelConfig,
reasoning_parser: str = None,
limit_mm_per_prompt: Optional[Dict[str, Any]] = None,
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
tool_parser: str = None,
enable_processor_cache: bool = False,
) -> None:
self.model_config = model_config
self.model_name_or_path = self.model_config.model
self.reasoning_parser = reasoning_parser
self.limit_mm_per_prompt = limit_mm_per_prompt
self.mm_processor_kwargs = mm_processor_kwargs
self.tool_parser = tool_parser
self.enable_processor_cache = enable_processor_cache
def create_processor(self):
reasoning_parser_obj = None
tool_parser_obj = None
if self.reasoning_parser:
reasoning_parser_obj = ReasoningParserManager.get_reasoning_parser(self.reasoning_parser)
if self.tool_parser:
tool_parser_obj = ToolParserManager.get_tool_parser(self.tool_parser)
architecture = self.model_config.architectures[0]
try:
from fastdeploy.plugins.input_processor import load_input_processor_plugins
Processor = load_input_processor_plugins()
self.processor = Processor(
model_name_or_path=self.model_name_or_path,
reasoning_parser_obj=reasoning_parser_obj,
tool_parser_obj=tool_parser_obj,
)
except:
if not self.model_config.enable_mm:
if not ErnieArchitectures.contains_ernie_arch(architecture):
from fastdeploy.input.text_processor import DataProcessor
self.processor = DataProcessor(
model_name_or_path=self.model_name_or_path,
reasoning_parser_obj=reasoning_parser_obj,
tool_parser_obj=tool_parser_obj,
)
else:
from fastdeploy.input.ernie4_5_processor import Ernie4_5Processor
self.processor = Ernie4_5Processor(
model_name_or_path=self.model_name_or_path,
reasoning_parser_obj=reasoning_parser_obj,
tool_parser_obj=tool_parser_obj,
)
else:
if ErnieArchitectures.contains_ernie_arch(architecture):
from fastdeploy.input.ernie4_5_vl_processor import (
Ernie4_5_VLProcessor,
)
self.processor = Ernie4_5_VLProcessor(
model_name_or_path=self.model_name_or_path,
limit_mm_per_prompt=self.limit_mm_per_prompt,
mm_processor_kwargs=self.mm_processor_kwargs,
reasoning_parser_obj=reasoning_parser_obj,
tool_parser_obj=tool_parser_obj,
enable_processor_cache=self.enable_processor_cache,
)
elif "PaddleOCRVL" in architecture:
from fastdeploy.input.paddleocr_vl_processor import (
PaddleOCRVLProcessor,
)
self.processor = PaddleOCRVLProcessor(
config=self.model_config,
model_name_or_path=self.model_name_or_path,
limit_mm_per_prompt=self.limit_mm_per_prompt,
mm_processor_kwargs=self.mm_processor_kwargs,
reasoning_parser_obj=reasoning_parser_obj,
)
else:
from fastdeploy.input.qwen_vl_processor import QwenVLProcessor
self.processor = QwenVLProcessor(
config=self.model_config,
model_name_or_path=self.model_name_or_path,
limit_mm_per_prompt=self.limit_mm_per_prompt,
mm_processor_kwargs=self.mm_processor_kwargs,
reasoning_parser_obj=reasoning_parser_obj,
enable_processor_cache=self.enable_processor_cache,
)
return self.processor