mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 81fbd54c9d
			
		
	
	81fbd54c9d
	
	
	
		
			
			* add tests for timvx * add mobilenetv1 test * update code * fix log info * update log * fix test --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
		
			
				
	
	
		
			69 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			69 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| #include <string>
 | |
| 
 | |
| #include "common.h"
 | |
| #include "fastdeploy/vision.h"
 | |
| #ifdef WIN32
 | |
| const char sep = '\\';
 | |
| #else
 | |
| const char sep = '/';
 | |
| #endif
 | |
| 
 | |
| void InitAndInfer(const std::string& model_dir, const std::string& image_file,
 | |
|                   const std::string& cls_result) {
 | |
|   auto model_file = model_dir + sep + "inference.pdmodel";
 | |
|   auto params_file = model_dir + sep + "inference.pdiparams";
 | |
|   auto config_file = model_dir + sep + "inference_cls.yaml";
 | |
|   fastdeploy::vision::EnableFlyCV();
 | |
|   fastdeploy::RuntimeOption option;
 | |
|   option.UseTimVX();
 | |
| 
 | |
|   auto model = fastdeploy::vision::classification::PaddleClasModel(
 | |
|       model_file, params_file, config_file, option);
 | |
| 
 | |
|   assert(model.Initialized());
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::ClassifyResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (CompareClsResult(res, cls_result)) {
 | |
|     std::cout << model_dir + " run successfully." << std::endl;
 | |
|   } else {
 | |
|     std::cerr << model_dir + " run failed." << std::endl;
 | |
|   }
 | |
| }
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
|   if (argc < 4) {
 | |
|     std::cout
 | |
|         << "Usage: test_clas path/to/quant_model "
 | |
|            "path/to/image "
 | |
|            "e.g ./test_clas ./ResNet50_vd_quant ./test.jpeg resnet50_clas.txt"
 | |
|         << std::endl;
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   std::string model_dir = argv[1];
 | |
|   std::string test_image = argv[2];
 | |
|   std::string cls_result = argv[3];
 | |
|   InitAndInfer(model_dir, test_image, cls_result);
 | |
|   return 0;
 | |
| }
 |