Files
FastDeploy/fastdeploy/inter_communicator/engine_worker_queue.py
kevin 109d48e456
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[Feature] support async download features (#5003)
* support async download features

* add test case

* update code
2025-11-19 22:23:36 +08:00

867 lines
37 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import threading
import time
from multiprocessing.managers import (
AcquirerProxy,
BaseManager,
ListProxy,
Value,
ValueProxy,
)
from queue import Queue
from typing import Any, List, Tuple
import numpy as np
import paddle
from fastdeploy import envs
from fastdeploy.utils import llm_logger
class EngineWorkerQueue:
"""
Cross-machine and cross-process communication queue between Engine and Worker.
Manages shared resources using multiprocessing managers for inter-process communication.
"""
def __init__(
self,
address: Tuple[str, int] = ("0.0.0.0", 5000),
authkey: bytes = b"secret_key",
is_server: bool = False,
num_client: int = 1, # tensor parallel size
client_id: int = -1, # tensor parallel id
local_data_parallel_size: int = 1, # data parallel size
local_data_parallel_id: int = 0, # local data parallel id
) -> None:
"""
Initialize the communication queue.
Args:
address: Network address (IP, port) for the queue server
authkey: Authentication key for secure connection
is_server: Whether this instance acts as a server
num_client: Total number of expected clients
client_id: Unique identifier for client instances
"""
self.address: Tuple[str, int] = address
self.authkey: bytes = authkey
self.is_server: bool = is_server
self.num_client: int = num_client
self.client_id: int = client_id
self.local_data_parallel_size = local_data_parallel_size
self.local_data_parallel_id = local_data_parallel_id
class QueueManager(BaseManager):
"""
Custom QueueManager for proxy object registration.
"""
pass
if is_server:
# Server-side initialization for shared resources
self.tasks_init: List[List[Any]] = [list() for _ in range(self.local_data_parallel_size)]
self.client_read_flag_init: List[List[int]] = [
[1] * self.num_client for _ in range(self.local_data_parallel_size)
]
self.lock_init: List[threading.Lock] = [threading.Lock() for _ in range(self.local_data_parallel_size)]
self.read_finish_flag_init: List[Value] = [Value("i", 0) for _ in range(self.local_data_parallel_size)]
self.connected_client_counter_init: List[Value] = [
Value("i", 0) for _ in range(self.local_data_parallel_size)
]
self.finished_req_list = [list() for _ in range(self.local_data_parallel_size)]
self.finished_add_cache_task_list = [list() for _ in range(self.local_data_parallel_size)]
self.cache_infos_init: List[List[Any]] = [list() for _ in range(self.local_data_parallel_size)]
self.connect_rdma_tasks_list = [list() for _ in range(self.local_data_parallel_size)]
self.connect_rdma_tasks_response_list = [list() for _ in range(self.local_data_parallel_size)]
self.client_read_info_flag_init: List[List[int]] = [
[0] * self.num_client for _ in range(self.local_data_parallel_size)
]
self.lock_info_init: List[threading.Lock] = [
threading.Lock() for _ in range(self.local_data_parallel_size)
]
# PD disaggregation
# Locks
self.connect_task_lock_init: List[threading.Lock] = [
threading.Lock() for _ in range(self.local_data_parallel_size)
] # connect rdma task
self.connect_task_response_lock_init: List[threading.Lock] = [
threading.Lock() for _ in range(self.local_data_parallel_size)
] # connect rdma task response
self.finish_add_cache_task_lock_init: List[threading.Lock] = [
threading.Lock() for _ in range(self.local_data_parallel_size)
] # finish add cache task
self.finish_send_cache_lock_init: List[threading.Lock] = [
threading.Lock() for _ in range(self.local_data_parallel_size)
] # finish send cache
# sync read status for TPs
self.client_get_connect_task_flag_init: List[List[int]] = [
[0] * self.num_client for _ in range(self.local_data_parallel_size)
]
self.client_get_connect_task_response_flag_init: List[List[int]] = [
[0] * self.num_client for _ in range(self.local_data_parallel_size)
]
self.client_get_finished_add_cache_task_flag_init: List[List[int]] = [
[0] * self.num_client for _ in range(self.local_data_parallel_size)
]
self.client_get_finish_send_cache_flag_init: List[List[int]] = [
[0] * self.num_client for _ in range(self.local_data_parallel_size)
]
self.can_put_next_connect_task_response_flag_init: List[Value] = [
Value("i", 1) for _ in range(self.local_data_parallel_size)
]
self.can_put_next_add_task_finished_flag_init: List[Value] = [
Value("i", 1) for _ in range(self.local_data_parallel_size)
]
self.can_put_next_send_cache_finished_flag_init: List[Value] = [
Value("i", 1) for _ in range(self.local_data_parallel_size)
]
# barrier
self.get_connect_task_barrier = [
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
]
self.get_connect_task_response_barrier = [
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
]
self.finish_add_cache_task_barrier = [
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
]
self.begin_send_cache_barrier = [
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
]
self.finish_send_cache_barrier = [
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
]
self.get_cache_info_barrier = [
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
]
self.finish_request_barrier = [
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
]
self.worker_process_tp_barrier = [
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
]
# Register shared objects with proxy types
QueueManager.register(
"get_tasks",
callable=lambda idx: self.tasks_init[idx],
proxytype=ListProxy,
)
QueueManager.register(
"get_client_read_flag",
callable=lambda idx: self.client_read_flag_init[idx],
proxytype=ListProxy,
)
QueueManager.register(
"get_client_get_connect_task_flag",
callable=lambda idx: self.client_get_connect_task_flag_init[idx],
proxytype=ListProxy,
)
QueueManager.register(
"get_client_get_connect_task_response_flag",
callable=lambda idx: self.client_get_connect_task_response_flag_init[idx],
proxytype=ListProxy,
)
QueueManager.register(
"get_client_get_finished_add_cache_task_flag_init",
callable=lambda idx: self.client_get_finished_add_cache_task_flag_init[idx],
proxytype=ListProxy,
)
QueueManager.register(
"get_client_get_finish_send_cache_flag_init",
callable=lambda idx: self.client_get_finish_send_cache_flag_init[idx],
proxytype=ListProxy,
)
QueueManager.register(
"get_lock",
callable=lambda idx: self.lock_init[idx],
proxytype=AcquirerProxy,
)
QueueManager.register(
"get_read_finish_flag",
callable=lambda idx: self.read_finish_flag_init[idx],
proxytype=ValueProxy,
)
QueueManager.register(
"get_can_put_next_connect_task_response_flag",
callable=lambda idx: self.can_put_next_connect_task_response_flag_init[idx],
proxytype=ValueProxy,
)
QueueManager.register(
"get_can_put_next_add_task_finished_flag",
callable=lambda idx: self.can_put_next_add_task_finished_flag_init[idx],
proxytype=ValueProxy,
)
QueueManager.register(
"get_can_put_next_send_cache_finished_flag",
callable=lambda idx: self.can_put_next_send_cache_finished_flag_init[idx],
proxytype=ValueProxy,
)
# PD disaggregation
QueueManager.register(
"get_connect_task_lock",
callable=lambda idx: self.connect_task_lock_init[idx],
proxytype=AcquirerProxy,
)
QueueManager.register(
"get_connect_task_response_lock",
callable=lambda idx: self.connect_task_response_lock_init[idx],
proxytype=AcquirerProxy,
)
QueueManager.register(
"get_finish_add_cache_task_lock",
callable=lambda idx: self.finish_add_cache_task_lock_init[idx],
proxytype=AcquirerProxy,
)
QueueManager.register(
"get_finish_send_cache_lock",
callable=lambda idx: self.finish_send_cache_lock_init[idx],
proxytype=AcquirerProxy,
)
QueueManager.register(
"get_connect_rdma_tasks", callable=lambda idx: self.connect_rdma_tasks_list[idx], proxytype=ListProxy
)
QueueManager.register(
"get_connect_rdma_tasks_responses",
callable=lambda idx: self.connect_rdma_tasks_response_list[idx],
proxytype=ListProxy,
)
QueueManager.register(
"get_connected_client_counter",
callable=lambda idx: self.connected_client_counter_init[idx],
proxytype=ValueProxy,
)
QueueManager.register(
"get_finish_request_queue", callable=lambda idx: self.finished_req_list[idx], proxytype=ListProxy
)
QueueManager.register(
"get_finish_add_cache_task_queue",
callable=lambda idx: self.finished_add_cache_task_list[idx],
proxytype=ListProxy,
)
QueueManager.register(
"get_cache_infos",
callable=lambda idx: self.cache_infos_init[idx],
proxytype=ListProxy,
)
QueueManager.register(
"get_client_read_info_flag",
callable=lambda idx: self.client_read_info_flag_init[idx],
proxytype=ListProxy,
)
QueueManager.register(
"get_lock_info",
callable=lambda idx: self.lock_info_init[idx],
proxytype=AcquirerProxy,
)
self.disaggregate_requests = [Queue() for _ in range(self.local_data_parallel_size)]
QueueManager.register(
"get_disaggregate_requests",
callable=lambda idx: self.disaggregate_requests[idx],
)
QueueManager.register(
"get_finish_request_barrier",
callable=lambda idx: self.finish_request_barrier[idx],
)
QueueManager.register(
"get_connect_task_barrier",
callable=lambda idx: self.get_connect_task_barrier[idx],
)
QueueManager.register(
"get_connect_task_response_barrier",
callable=lambda idx: self.get_connect_task_response_barrier[idx],
)
QueueManager.register(
"get_begin_send_cache_barrier",
callable=lambda idx: self.begin_send_cache_barrier[idx],
)
QueueManager.register(
"get_finish_send_cache_barrier",
callable=lambda idx: self.finish_send_cache_barrier[idx],
)
QueueManager.register(
"get_cache_info_barrier",
callable=lambda idx: self.get_cache_info_barrier[idx],
)
QueueManager.register(
"get_finish_add_cache_task_barrier",
callable=lambda idx: self.finish_add_cache_task_barrier[idx],
)
QueueManager.register(
"get_worker_process_tp_barrier",
callable=lambda idx: self.worker_process_tp_barrier[idx],
)
self.manager: BaseManager = QueueManager(address=self.address, authkey=self.authkey)
self.manager.start()
# If the port is 0, an anonymous port will be automatically assigned. The port range can be queried from system configuration,
# e.g., by running 'cat /proc/sys/net/ipv4/ip_local_port_range'; typically in the range of 10000-60999.
# After manager.start(), its address attribute will be updated to the actual listening address.
# We update self.address here so that the real address can be queried later.
self.address = self.manager.address
else:
# Client-side connection setup
assert (
self.client_id >= 0 and self.client_id < self.num_client
), f"self.client_id={self.client_id}, self.num_client={self.num_client}"
QueueManager.register("get_tasks")
QueueManager.register("get_client_read_flag")
QueueManager.register("get_lock")
QueueManager.register("get_read_finish_flag")
QueueManager.register("get_connected_client_counter")
QueueManager.register("get_finish_request_queue")
QueueManager.register("get_finish_add_cache_task_queue")
QueueManager.register("get_cache_infos")
QueueManager.register("get_client_read_info_flag")
QueueManager.register("get_lock_info")
QueueManager.register("get_disaggregate_requests")
QueueManager.register("get_finish_request_barrier")
QueueManager.register("get_finish_add_cache_task_barrier")
QueueManager.register("get_connect_task_barrier")
QueueManager.register("get_connect_task_response_barrier")
QueueManager.register("get_finish_send_cache_barrier")
QueueManager.register("get_begin_send_cache_barrier")
QueueManager.register("get_cache_info_barrier")
QueueManager.register("get_connect_rdma_tasks")
QueueManager.register("get_client_get_connect_task_flag")
QueueManager.register("get_client_get_connect_task_response_flag")
QueueManager.register("get_client_get_finished_add_cache_task_flag_init")
QueueManager.register("get_client_get_finish_send_cache_flag_init")
QueueManager.register("get_connect_rdma_tasks_responses")
QueueManager.register("get_connect_task_lock")
QueueManager.register("get_connect_task_response_lock")
QueueManager.register("get_finish_add_cache_task_lock")
QueueManager.register("get_finish_send_cache_lock")
QueueManager.register("get_worker_process_tp_barrier")
QueueManager.register("get_can_put_next_connect_task_response_flag")
QueueManager.register("get_can_put_next_add_task_finished_flag")
QueueManager.register("get_can_put_next_send_cache_finished_flag")
self.manager = QueueManager(address=self.address, authkey=self.authkey)
self._connect_with_retry()
# Get proxy objects for shared resources
self.tasks: ListProxy = self.manager.get_tasks(self.local_data_parallel_id)
self.client_read_flag: ListProxy = self.manager.get_client_read_flag(self.local_data_parallel_id)
self.lock: AcquirerProxy = self.manager.get_lock(self.local_data_parallel_id)
self.read_finish_flag: ValueProxy = self.manager.get_read_finish_flag(self.local_data_parallel_id)
self.connected_client_counter: ValueProxy = self.manager.get_connected_client_counter(
self.local_data_parallel_id
)
self.cache_infos: ListProxy = self.manager.get_cache_infos(self.local_data_parallel_id)
self.client_read_info_flag: ListProxy = self.manager.get_client_read_info_flag(self.local_data_parallel_id)
self.lock_info: AcquirerProxy = self.manager.get_lock_info(self.local_data_parallel_id)
# p/d 分离获取
self.disaggregate_requests = self.manager.get_disaggregate_requests(self.local_data_parallel_id)
self.finish_request_barrier = self.manager.get_finish_request_barrier(self.local_data_parallel_id)
self.finish_add_cache_task_barrier = self.manager.get_finish_add_cache_task_barrier(
self.local_data_parallel_id
)
self.connect_task_barrier = self.manager.get_connect_task_barrier(self.local_data_parallel_id)
self.connect_task_response_barrier = self.manager.get_connect_task_response_barrier(
self.local_data_parallel_id
)
self.finish_send_cache_barrier = self.manager.get_finish_send_cache_barrier(self.local_data_parallel_id)
self.cache_info_barrier = self.manager.get_cache_info_barrier(self.local_data_parallel_id)
self.begin_send_cache_barrier = self.manager.get_begin_send_cache_barrier(self.local_data_parallel_id)
self.worker_process_tp_barrier = self.manager.get_worker_process_tp_barrier(self.local_data_parallel_id)
self.finished_send_cache_list = self.manager.get_finish_request_queue(self.local_data_parallel_id)
self.finished_add_cache_task_list = self.manager.get_finish_add_cache_task_queue(
self.local_data_parallel_id
)
# p/d互联
self.connect_rdma_tasks = self.manager.get_connect_rdma_tasks(self.local_data_parallel_id)
self.client_get_connect_task_flag = self.manager.get_client_get_connect_task_flag(
self.local_data_parallel_id
)
self.client_get_connect_task_response_flag = self.manager.get_client_get_connect_task_response_flag(
self.local_data_parallel_id
)
self.client_get_finished_add_cache_task_flag = (
self.manager.get_client_get_finished_add_cache_task_flag_init(self.local_data_parallel_id)
)
self.client_get_finish_send_cache_flag = self.manager.get_client_get_finish_send_cache_flag_init(
self.local_data_parallel_id
)
self.connect_rdma_task_responses = self.manager.get_connect_rdma_tasks_responses(
self.local_data_parallel_id
)
self.connect_task_lock = self.manager.get_connect_task_lock(self.local_data_parallel_id)
self.connect_task_response_lock = self.manager.get_connect_task_response_lock(self.local_data_parallel_id)
self.finish_add_cache_task_lock = self.manager.get_finish_add_cache_task_lock(self.local_data_parallel_id)
self.finish_send_cache_lock = self.manager.get_finish_send_cache_lock(self.local_data_parallel_id)
self.can_put_next_add_task_finished_flag = self.manager.get_can_put_next_add_task_finished_flag(
self.local_data_parallel_id
)
self.can_put_next_connect_task_response_flag = self.manager.get_can_put_next_connect_task_response_flag(
self.local_data_parallel_id
)
self.can_put_next_send_cache_finished_flag = self.manager.get_can_put_next_send_cache_finished_flag(
self.local_data_parallel_id
)
assert self.num_client == len(self.client_read_flag)
if is_server:
llm_logger.info("EngineWorkerQueue server started.")
else:
# Update client connection counter
self.lock.acquire()
self.connected_client_counter.set(self.connected_client_counter.get() + 1)
self.lock.release()
llm_logger.info(
f"Connected EngineWorkerQueue client_id: {self.client_id}, number "
f"of connected clients: {self.connected_client_counter.get()}"
)
def get_server_port(self) -> int:
"""
Returns the actual port that the server instance is listening on.
Calling this method only makes sense on instances where is_server=True.
"""
if not self.is_server:
raise RuntimeError("Only the server instance can provide the port.")
return self.address[1]
def _connect_with_retry(self, max_retries: int = 5, interval: int = 3) -> None:
"""
Connect to the server with retry mechanism.
Args:
max_retries: Maximum connection attempts
interval: Retry interval in seconds
Raises:
ConnectionError: If all connection attempts fail
"""
for _ in range(max_retries):
try:
self.manager.connect()
return
except ConnectionRefusedError:
time.sleep(interval)
raise ConnectionError(f"TaskQueue cannot connect {self.address}")
@staticmethod
def to_tensor(tasks):
"""
Convert NumPy arrays in multimodal inputs to Paddle tensors.
Args:
tasks (tuple): ([request], bsz)
"""
if (not envs.FD_ENABLE_MAX_PREFILL) and (not envs.FD_ENABLE_E2W_TENSOR_CONVERT):
return
try:
batch_tasks, _ = tasks
for task in batch_tasks:
multimodal_inputs = getattr(task, "multimodal_inputs", None)
if not multimodal_inputs:
continue
# tensor keys
tensor_keys = [
"images",
"patch_idx",
"token_type_ids",
"position_ids",
"attention_mask_offset",
]
list_keys = [
"image_features",
"video_features",
"audio_features",
]
llm_logger.debug(f"Converting multimodal inputs to tensor...{tensor_keys + list_keys}")
for key in tensor_keys:
value = multimodal_inputs.get(key)
if value is None:
continue
if not isinstance(value, paddle.Tensor):
multimodal_inputs[key] = paddle.to_tensor(value)
for key in list_keys:
value = multimodal_inputs.get(key)
if value is None:
continue
if isinstance(value, list):
multimodal_inputs[key] = [paddle.to_tensor(v) for v in value]
except Exception as e:
llm_logger.warning(f"Tensor conversion failed: {type(e).__name__}: {e}")
@staticmethod
def to_numpy(tasks):
"""
Convert PaddlePaddle tensors in multimodal inputs to NumPy arrays.
Args:
tasks: List of tasks containing multimodal inputs.
"""
if (not envs.FD_ENABLE_MAX_PREFILL) and (not envs.FD_ENABLE_E2W_TENSOR_CONVERT):
return
try:
batch_tasks, _ = tasks
for task in batch_tasks:
if not hasattr(task, "multimodal_inputs"):
continue
images = task.multimodal_inputs.get("images", None)
if isinstance(images, paddle.Tensor):
llm_logger.debug(f"Convert image to numpy, shape: {images.shape}")
task.multimodal_inputs["images"] = images.numpy()
list_keys = [
"image_features",
"video_features",
"audio_features",
]
for key in list_keys:
value = task.multimodal_inputs.get(key, None)
if value is None:
continue
if isinstance(value, list):
task.multimodal_inputs[key] = [v.numpy() for v in value]
except Exception as e:
llm_logger.warning(f"Failed to convert to numpy: {e}")
def put_tasks(self, tasks: List[Any]) -> None:
"""
Add tasks to the shared queue in a thread-safe manner.
Waits until all clients have read previous tasks before adding new ones.
Args:
tasks: Tasks to be added to the queue
"""
self.lock.acquire()
while sum(self.client_read_flag) < self.num_client:
self.lock.release()
time.sleep(0.001)
self.lock.acquire()
# 多模态输入转换为张量
EngineWorkerQueue.to_tensor(tasks)
self.tasks[:] = list()
self.client_read_flag[:] = [0] * self.num_client
self.tasks.append(tasks)
self.lock.release()
def get_tasks(self) -> Tuple[List[Any], bool]:
"""
Retrieve tasks from the shared queue and update read status.
Returns:
tuple: (list of tasks, bool indicating if all clients have read)
"""
tasks: List[Any] = list()
self.lock.acquire()
tasks.extend(self.tasks)
# 多模态输入转换为numpy
EngineWorkerQueue.to_numpy(tasks)
self.client_read_flag[self.client_id] = 1
all_client_read: bool = np.sum(self.client_read_flag) == self.num_client
if all_client_read:
self.tasks[:] = list()
self.lock.release()
return tasks, all_client_read
def num_tasks(self) -> int:
"""
Get current number of tasks in the queue.
Returns:
int: Total number of tasks
"""
self.lock.acquire()
total_num: int = len(self.tasks)
self.lock.release()
return total_num
def put_connect_rdma_task(self, connect_rdma_task):
self.connect_task_lock.acquire()
while sum(self.client_get_connect_task_flag) < self.num_client:
self.connect_task_lock.release()
time.sleep(0.001)
self.connect_task_lock.acquire()
self.connect_rdma_tasks[:] = list()
self.client_get_connect_task_flag[:] = [0] * self.num_client
self.connect_rdma_tasks.append(connect_rdma_task)
self.connect_task_lock.release()
def get_connect_rdma_task(self):
connect_rdma_task = None
self.connect_task_lock.acquire()
if len(self.connect_rdma_tasks) > 0:
connect_rdma_task = self.connect_rdma_tasks[0]
self.client_get_connect_task_flag[self.client_id] = 1
all_client_read: bool = np.sum(self.client_get_connect_task_flag) == self.num_client
if all_client_read:
self.connect_rdma_tasks[:] = list()
self.connect_task_lock.release()
return connect_rdma_task, all_client_read
def put_connect_rdma_task_response(self, connect_rdma_task_response):
self.connect_task_response_lock.acquire()
while not self.can_put_next_connect_task_response_flag.get():
self.connect_task_response_lock.release()
time.sleep(0.001)
self.connect_task_response_lock.acquire()
self.connect_rdma_task_responses.append(connect_rdma_task_response)
self.client_get_connect_task_response_flag[self.client_id] = 1
all_client_put: bool = np.sum(self.client_get_connect_task_response_flag) == self.num_client
if all_client_put:
self.can_put_next_connect_task_response_flag.set(0)
self.connect_task_response_lock.release()
return all_client_put
def get_connect_rdma_task_response(self):
task_response = None
self.connect_task_response_lock.acquire()
if len(self.connect_rdma_task_responses) == 0:
self.connect_task_response_lock.release()
return task_response
while sum(self.client_get_connect_task_response_flag) < self.num_client:
self.connect_task_response_lock.release()
time.sleep(0.001)
self.connect_task_response_lock.acquire()
if len(self.connect_rdma_task_responses) > 0:
task_response = self.connect_rdma_task_responses[0]
for tmp_task_response in self.connect_rdma_task_responses:
task_response["success"] = task_response["success"] and tmp_task_response["success"]
self.connect_rdma_task_responses[:] = list()
self.client_get_connect_task_response_flag[:] = [0] * self.num_client
self.can_put_next_connect_task_response_flag.set(1)
self.connect_task_response_lock.release()
return task_response
def put_cache_info(self, cache_info) -> None:
"""
Args:
tasks: Tasks to be added to the queue
"""
self.lock_info.acquire()
while sum(self.client_read_info_flag) < self.num_client:
self.lock_info.release()
time.sleep(0.001)
self.lock_info.acquire()
self.cache_infos[:] = list()
self.client_read_info_flag[:] = [0] * self.num_client
self.cache_infos.extend(cache_info)
llm_logger.debug(
f"put cache_infos to engine worker queue: {self.cache_infos}, "
f"local_data_parallel_id:{self.local_data_parallel_id}"
)
self.lock_info.release()
def get_cache_info(self) -> List[Any]:
"""
Retrieve tasks from the shared queue and update read status.
Returns:
tuple: (list of tasks, bool indicating if all clients have read)
"""
cache_infos: List[Any] = list()
self.lock_info.acquire()
if self.client_read_info_flag[self.client_id] == 1:
self.lock_info.release()
return cache_infos
cache_infos.extend(self.cache_infos)
self.client_read_info_flag[self.client_id] = 1
all_client_read: bool = np.sum(self.client_read_info_flag) == self.num_client
if all_client_read:
self.cache_infos[:] = list()
self.lock_info.release()
if len(cache_infos) != 0:
llm_logger.debug(
f"get cache infos from engine worker queue: {cache_infos}, "
f"local_data_parallel_id:{self.local_data_parallel_id}"
)
return cache_infos
def num_cache_infos(self) -> int:
"""
Get current number of tasks in the queue.
Returns:
int: Total number of tasks
"""
self.lock_info.acquire()
total_num: int = len(self.cache_infos)
self.lock_info.release()
return total_num
def put_finished_req(self, send_cache_result) -> None:
"""
Put finished request ID into the queue.
Args:
req_ids: Request ID to be added to the queue
"""
self.finish_send_cache_lock.acquire()
while not self.can_put_next_send_cache_finished_flag.get():
self.finish_send_cache_lock.release()
time.sleep(0.001)
self.finish_send_cache_lock.acquire()
self.finished_send_cache_list.append(send_cache_result[0])
self.client_get_finish_send_cache_flag[self.client_id] = 1
all_client_put: bool = np.sum(self.client_get_finish_send_cache_flag) == self.num_client
if all_client_put:
self.can_put_next_send_cache_finished_flag.set(0)
self.finish_send_cache_lock.release()
return all_client_put
def get_finished_req(self) -> str:
"""
Get finished request ID from the queue.
Returns:
str: Finished request ID
"""
response = []
self.finish_send_cache_lock.acquire()
if len(self.finished_send_cache_list) == 0:
self.finish_send_cache_lock.release()
return response
while sum(self.client_get_finish_send_cache_flag) < self.num_client:
self.finish_send_cache_lock.release()
time.sleep(0.001)
self.finish_send_cache_lock.acquire()
if len(self.finished_send_cache_list) > 0:
response = self.finished_send_cache_list[0]
for tmp_response in self.finished_send_cache_list:
if "error" in tmp_response[1]:
response[1] = tmp_response[1]
if response:
response = [response]
self.finished_send_cache_list[:] = list()
self.client_get_finish_send_cache_flag[:] = [0] * self.num_client
self.can_put_next_send_cache_finished_flag.set(1)
self.finish_send_cache_lock.release()
return response
def put_finished_add_cache_task_req(self, req_ids) -> None:
"""
Put finished request ID into the queue.
Args:
req_ids: Request ID to be added to the queue
"""
self.finish_add_cache_task_lock.acquire()
while not self.can_put_next_add_task_finished_flag.get():
self.finish_add_cache_task_lock.release()
time.sleep(0.001)
self.finish_add_cache_task_lock.acquire()
self.finished_add_cache_task_list.append(req_ids)
self.client_get_finished_add_cache_task_flag[self.client_id] = 1
all_client_put: bool = np.sum(self.client_get_finished_add_cache_task_flag) == self.num_client
if all_client_put:
self.can_put_next_add_task_finished_flag.set(0)
self.finish_add_cache_task_lock.release()
return all_client_put
def get_finished_add_cache_task_req(self) -> str:
"""
Get finished request ID from the queue.
Returns:
str: Finished request ID
"""
response = []
self.finish_add_cache_task_lock.acquire()
if len(self.finished_add_cache_task_list) == 0:
self.finish_add_cache_task_lock.release()
return response
while sum(self.client_get_finished_add_cache_task_flag) < self.num_client:
self.finish_add_cache_task_lock.release()
time.sleep(0.001)
self.finish_add_cache_task_lock.acquire()
if len(self.finished_add_cache_task_list) > 0:
response = self.finished_add_cache_task_list[0]
for tmp_response in self.finished_add_cache_task_list:
assert tmp_response == response
self.finished_add_cache_task_list[:] = list()
self.client_get_finished_add_cache_task_flag[:] = [0] * self.num_client
self.can_put_next_add_task_finished_flag.set(1)
self.finish_add_cache_task_lock.release()
return response
def disaggregate_queue_empty(self):
"""
Check if the disaggregated task queue is empty.
"""
return self.disaggregate_requests.qsize() == 0
def put_disaggregated_tasks(self, item):
"""
put disaggregated tasks to the queue
"""
llm_logger.debug("put item to queue")
self.disaggregate_requests.put(item)
llm_logger.debug("put item to queue success")
def get_disaggregated_tasks(self):
"""
get disaggregated tasks from the queue
"""
llm_logger.debug("get tasks from queue")
if self.disaggregate_requests.qsize() == 0:
return None
item = []
while not self.disaggregate_requests.empty():
item.append(self.disaggregate_requests.get())
llm_logger.debug("get tasks from queue success")
return item
def clear_data(self):
self.lock.acquire()
self.tasks[:] = list()
self.client_read_flag[:] = [1] * self.num_client
self.lock.release()
llm_logger.info("clear data for engine worker queue")
def cleanup(self):
"""
Exit the worker queue gracefully.
"""
if self.manager is not None and self.is_server:
self.manager.shutdown()