Files
FastDeploy/examples/multimodal/stable_diffusion/cpp/pipeline_stable_diffusion_inpaint.cc
2022-12-05 10:10:27 +00:00

321 lines
14 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "pipeline_stable_diffusion_inpaint.h"
#include "fastdeploy/function/functions.h"
#include "fastdeploy/vision/common/processors/color_space_convert.h"
#include "fastdeploy/vision/common/processors/mat.h"
#include "fastdeploy/vision/common/processors/resize.h"
#include <algorithm>
using namespace paddlenlp;
namespace fastdeploy {
static constexpr int NUM_LATENT_CHANNELS = 4;
static constexpr int NUM_UNET_INPUT_CHANNELS = 9;
void StableDiffusionInpaintPipeline::PrepareMaskAndMaskedImage(
const cv::Mat& image, const cv::Mat& mask_mat,
const std::vector<int64_t>& shape, FDTensor* mask, FDTensor* mask_image) {
vision::FDMat image_fdmat(image);
vision::BGR2RGB::Run(&image_fdmat, vision::ProcLib::OPENCV);
vision::Resize::Run(&image_fdmat, shape[1] * 8, shape[0] * 8, -1.0f, -1.0f,
cv::INTER_NEAREST, false, vision::ProcLib::OPENCV);
image_fdmat.ShareWithTensor(mask_image);
vision::FDMat mask_fdmat(mask_mat);
vision::BGR2GRAY::Run(&mask_fdmat, vision::ProcLib::OPENCV);
vision::Resize::Run(&mask_fdmat, shape[1] * 8, shape[0] * 8, -1.0f, -1.0f,
cv::INTER_NEAREST, false, vision::ProcLib::OPENCV);
FDTensor image_mask;
mask_fdmat.ShareWithTensor(&image_mask);
function::Cast(image_mask, &image_mask, FDDataType::FP32);
std::vector<float> float_mask(image_mask.Numel(), 0);
float* image_mask_ptr = reinterpret_cast<float*>(image_mask.Data());
for (int i = 0; i < image_mask.Numel(); ++i) {
if (image_mask_ptr[i] < 127.5) {
float_mask[i] = 1;
}
}
// NCHW format
image_mask.SetExternalData({1, 1, shape[0] * 8, shape[1] * 8},
FDDataType::FP32, float_mask.data());
// Set mask_image
mask_image->ExpandDim();
function::Transpose(*mask_image, mask_image, {0, 3, 1, 2});
function::Cast(*mask_image, mask_image, FDDataType::FP32);
*mask_image = *mask_image / 127.5f - 1.0f;
*mask_image = *mask_image * image_mask;
// Set mask
vision::FDMat mask_fdmat_t(mask_mat);
vision::BGR2GRAY::Run(&mask_fdmat_t, vision::ProcLib::OPENCV);
vision::Resize::Run(&mask_fdmat_t, shape[1], shape[0], -1.0f, -1.0f,
cv::INTER_NEAREST, false, vision::ProcLib::OPENCV);
mask_fdmat_t.ShareWithTensor(mask);
function::Cast(*mask, mask, FDDataType::FP32);
*mask = *mask / 255.0f;
mask->ExpandDim();
function::Transpose(*mask, mask, {0, 3, 1, 2});
float* mask_data = reinterpret_cast<float*>(mask->Data());
for (int i = 0; i < mask->Numel(); ++i) {
if (mask_data[i] < 0.5) {
mask_data[i] = 0;
} else {
mask_data[i] = 1;
}
}
}
StableDiffusionInpaintPipeline::StableDiffusionInpaintPipeline(
std::unique_ptr<Runtime> vae_encoder, std::unique_ptr<Runtime> vae_decoder,
std::unique_ptr<Runtime> text_encoder, std::unique_ptr<Runtime> unet,
std::unique_ptr<Scheduler> scheduler,
const paddlenlp::fast_tokenizer::tokenizers_impl::ClipFastTokenizer&
tokenizer)
: vae_encoder_(std::move(vae_encoder)),
vae_decoder_(std::move(vae_decoder)),
text_encoder_(std::move(text_encoder)), unet_(std::move(unet)),
scheduler_(std::move(scheduler)), tokenizer_(tokenizer) {}
void StableDiffusionInpaintPipeline::Predict(
const std::vector<std::string>& prompts, const cv::Mat& image,
const cv::Mat& mask_image, std::vector<FDTensor>* output_images, int height,
int width, int num_inference_steps, float guidance_scale,
const std::vector<std::string>& negative_prompt, int num_images_per_prompt,
float eta, uint32_t max_length, const FDTensor* latents, bool output_cv_mat,
callback_ptr callback, int callback_steps) {
int batch_size = prompts.size();
FDASSERT(batch_size >= 1, "prompts should not be empty");
FDASSERT(
height % 8 == 0 && width % 8 == 0,
"`height` and `width` have to be divisible by 8 but are {%d} and {%d}.",
height, width);
FDASSERT(callback_steps > 0,
"`callback_steps` has to be a positive integer but is {%d}",
callback_steps);
// Setting tokenizer attr
if (max_length == 0) {
tokenizer_.EnablePadMethod(fast_tokenizer::core::RIGHT,
tokenizer_.GetPadTokenId(), 0,
tokenizer_.GetPadToken(), nullptr, nullptr);
tokenizer_.DisableTruncMethod();
} else {
tokenizer_.EnablePadMethod(fast_tokenizer::core::RIGHT,
tokenizer_.GetPadTokenId(), 0,
tokenizer_.GetPadToken(), &max_length, nullptr);
tokenizer_.EnableTruncMethod(max_length, 0, fast_tokenizer::core::RIGHT,
fast_tokenizer::core::LONGEST_FIRST);
}
std::vector<fast_tokenizer::core::Encoding> encodings;
tokenizer_.EncodeBatchStrings(prompts, &encodings);
std::vector<int64_t> input_ids;
for (auto& encoding : encodings) {
auto curr_ids = encoding.GetIds();
input_ids.insert(input_ids.end(), curr_ids.begin(), curr_ids.end());
}
encodings.clear();
// Get text encoder output
FDTensor text_intput_ids;
std::vector<FDTensor> inputs(1);
inputs[0].SetExternalData({batch_size, max_length}, FDDataType::INT64,
input_ids.data());
TensorInfo text_info = text_encoder_->GetInputInfo(0);
inputs[0].name = text_info.name;
int output_size = text_encoder_->GetOutputInfos().size();
std::vector<FDTensor> outputs(output_size);
text_encoder_->Infer(inputs, &outputs);
FDTensor text_embeddings;
function::Tile(outputs[0], {num_images_per_prompt, 1, 1}, &text_embeddings);
// here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
// of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
// corresponds to doing no classifier free guidance.
bool do_classifier_free_guidance = guidance_scale > 1.0;
if (do_classifier_free_guidance) {
std::vector<std::string> uncond_tokens;
if (negative_prompt.size() == 0) {
uncond_tokens = {""};
} else if (negative_prompt.size() != batch_size) {
FDASSERT(false,
"negative_prompt has batch size %d, but prompt has batch size "
"%d. Please make sure that passed `negative_prompt` matches the "
"batch size of `prompt`.",
prompts.size(), negative_prompt.size());
} else {
uncond_tokens = negative_prompt;
}
tokenizer_.EncodeBatchStrings(uncond_tokens, &encodings);
input_ids.clear();
for (auto& encoding : encodings) {
auto curr_ids = encoding.GetIds();
input_ids.insert(input_ids.end(), curr_ids.begin(), curr_ids.end());
}
inputs[0].SetExternalData({batch_size, max_length}, FDDataType::INT64,
input_ids.data());
text_encoder_->Infer(inputs, &outputs);
FDTensor uncond_embeddings;
function::Tile(outputs[0], {num_images_per_prompt, 1, 1},
&uncond_embeddings);
function::Concat({uncond_embeddings, text_embeddings}, &text_embeddings);
}
std::vector<int64_t> latents_shape = {batch_size * num_images_per_prompt,
NUM_LATENT_CHANNELS, height / 8,
width / 8};
auto latents_dtype = text_embeddings.Dtype();
FDTensor actual_latents;
if (latents == nullptr) {
function::GaussianRandom(latents_shape, &actual_latents, latents_dtype);
} else {
bool result = std::equal(latents_shape.begin(), latents_shape.end(),
latents->Shape().begin());
FDASSERT(result, "Unexpected latents shape, got %s, expected %s",
Str(latents_shape).c_str(), Str(latents->Shape()).c_str());
actual_latents = *latents;
}
FDTensor mask_t, mask_image_t;
PrepareMaskAndMaskedImage(image, mask_image, {height / 8, width / 8}, &mask_t,
&mask_image_t);
function::Cast(mask_t, &mask_t, actual_latents.Dtype());
function::Cast(mask_image_t, &mask_image_t, actual_latents.Dtype());
// Get vae encoder output
TensorInfo vae_encoder_info = vae_encoder_->GetInputInfo(0);
mask_image_t.name = vae_encoder_info.name;
outputs.resize(vae_encoder_->GetOutputInfos().size());
inputs = {mask_image_t};
vae_encoder_->Infer(inputs, &outputs);
FDTensor masked_image_latents = 0.18215f * outputs[0];
std::vector<int64_t> mask_shape(mask_t.Shape().size(), 1);
mask_shape[0] = batch_size * num_images_per_prompt;
function::Tile(mask_t, mask_shape, &mask_t);
std::vector<int64_t> mask_image_shape(masked_image_latents.Shape().size(), 1);
mask_image_shape[0] = batch_size * num_images_per_prompt;
function::Tile(masked_image_latents, mask_image_shape, &masked_image_latents);
if (do_classifier_free_guidance) {
function::Concat({mask_t, mask_t}, &mask_t);
function::Concat({masked_image_latents, masked_image_latents},
&masked_image_latents);
}
int num_channels_mask = mask_t.Shape()[1];
int num_channels_masked_image = masked_image_latents.Shape()[1];
FDASSERT(
NUM_LATENT_CHANNELS + num_channels_mask + num_channels_masked_image ==
NUM_UNET_INPUT_CHANNELS,
"Incorrect configuration settings! The config of `pipeline.unet` expects"
" %d but received `num_channels_latents`: %d + `num_channels_mask`: %d "
"+ `num_channels_masked_image`: %d"
" = %d. Please verify the config of `pipeline.unet` or your `mask_image` "
"or `image` input.",
NUM_UNET_INPUT_CHANNELS, NUM_LATENT_CHANNELS, num_channels_mask,
num_channels_masked_image,
NUM_LATENT_CHANNELS + num_channels_mask + num_channels_masked_image);
// set timesteps
scheduler_->SetTimesteps(num_inference_steps);
// scale the initial noise by the standard deviation required by the scheduler
actual_latents = actual_latents * scheduler_->InitNoiseSigma();
auto timestep = scheduler_->GetTimesteps();
int64_t* timestep_data = reinterpret_cast<int64_t*>(timestep.Data());
outputs.resize(unet_->GetOutputInfos().size());
inputs.resize(unet_->GetInputInfos().size());
inputs[2] = std::move(text_embeddings);
auto unet_infos = unet_->GetInputInfos();
for (int i = 0; i < timestep.Numel(); ++i) {
FDTensor t;
function::Slice(timestep, {0}, {i}, &t);
inputs[1] = t;
// expand the latents if we are doing classifier free guidance
FDTensor latent_model_input;
if (do_classifier_free_guidance) {
function::Concat({actual_latents, actual_latents}, &latent_model_input);
} else {
latent_model_input = actual_latents;
}
// concat latents, mask, masked_image_latnets in the channel dimension
function::Concat({latent_model_input, mask_t, masked_image_latents},
&latent_model_input, 1);
scheduler_->ScaleModelInput(latent_model_input, &latent_model_input, {t});
inputs[0] = std::move(latent_model_input);
// predict the noise residual
for (int i = 0; i < unet_infos.size(); ++i) {
inputs[i].name = unet_infos[i].name;
}
unet_->Infer(inputs, &outputs);
FDTensor noise_pred = std::move(outputs[0]);
// perform guidance
if (do_classifier_free_guidance) {
std::vector<FDTensor> noise_preds;
int dim0 = noise_pred.Shape()[0];
function::Split(noise_pred, {dim0 - dim0 / 2, dim0 / 2}, &noise_preds);
noise_pred =
noise_preds[0] + guidance_scale * (noise_preds[1] - noise_preds[0]);
}
// compute the previous noisy sample x_t -> x_t-1
int64_t time = reinterpret_cast<int64_t*>(t.Data())[0];
scheduler_->Step(noise_pred, time, actual_latents, &actual_latents);
// call the callback, if provided
if (callback != nullptr && i % callback_steps == 0) {
callback(i, time, &actual_latents);
}
}
actual_latents = (1.0f / 0.18215f) * actual_latents;
// Get vae decoder output
int actual_latents_bs = actual_latents.Shape()[0];
TensorInfo vae_decoder_info = vae_decoder_->GetInputInfo(0);
inputs.resize(1);
outputs.resize(vae_decoder_->GetOutputInfos().size());
std::vector<FDTensor> decoder_reuslt;
for (int i = 0; i < actual_latents_bs; ++i) {
function::Slice(actual_latents, {0}, {i}, {i + 1}, &inputs[0]);
inputs[0].name = vae_decoder_info.name;
vae_decoder_->Infer(inputs, &outputs);
decoder_reuslt.emplace_back(std::move(outputs[0]));
}
FDTensor output_image;
function::Concat(decoder_reuslt, &output_image);
function::Clip(output_image / 2.0f + 0.5f, 0, 1, &output_image);
function::Transpose(output_image, &output_image, {0, 2, 3, 1});
if (output_cv_mat) {
output_image = output_image * 255.0f;
function::Round(output_image, &output_image);
function::Cast(output_image, &output_image, FDDataType::UINT8);
}
int output_batch_size = output_image.Shape()[0];
output_images->resize(output_batch_size);
for (int i = 0; i < output_batch_size; ++i) {
function::Slice(output_image, {0}, {i}, &(*output_images)[i]);
vision::FDMat mask_fdmat_t = vision::FDMat::Create((*output_images)[i]);
vision::RGB2BGR::Run(&mask_fdmat_t, vision::ProcLib::OPENCV);
mask_fdmat_t.CopyToTensor(&(*output_images)[i]);
}
}
} // namespace fastdeploy