Files
FastDeploy/fastdeploy/vision/segmentation/ppseg/model.cc
yeliang2258 104d965b38 [Backend] Add YOLOv5、PPYOLOE and PP-Liteseg for RV1126 (#647)
* add yolov5 and ppyoloe for rk1126

* update code, rename rk1126 to rv1126

* add PP-Liteseg

* update lite lib

* updade doc for PPYOLOE

* update doc

* fix docs

* fix doc and examples

* update code

* uodate doc

* update doc

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-12-05 16:48:00 +08:00

84 lines
3.1 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/segmentation/ppseg/model.h"
namespace fastdeploy {
namespace vision {
namespace segmentation {
PaddleSegModel::PaddleSegModel(const std::string& model_file,
const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) : preprocessor_(config_file),
postprocessor_(config_file) {
valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
valid_rknpu_backends = {Backend::RKNPU2};
valid_timvx_backends = {Backend::LITE};
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool PaddleSegModel::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool PaddleSegModel::Predict(cv::Mat* im, SegmentationResult* result) {
return Predict(*im, result);
}
bool PaddleSegModel::Predict(const cv::Mat& im, SegmentationResult* result) {
std::vector<SegmentationResult> results;
if (!BatchPredict({im}, &results)) {
return false;
}
*result = std::move(results[0]);
return true;
}
bool PaddleSegModel::BatchPredict(const std::vector<cv::Mat>& imgs,
std::vector<SegmentationResult>* results) {
std::vector<FDMat> fd_images = WrapMat(imgs);
// Record the shape of input images
std::map<std::string, std::vector<std::array<int, 2>>> imgs_info;
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &imgs_info)) {
FDERROR << "Failed to preprocess input data while using model:"
<< ModelName() << "." << std::endl;
return false;
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference while using model:" << ModelName() << "."
<< std::endl;
return false;
}
if (!postprocessor_.Run(reused_output_tensors_, results, imgs_info)) {
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
<< std::endl;
return false;
}
return true;
}
} // namespace segmentation
} // namespace vision
} // namespace fastdeploy