mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
280 lines
11 KiB
Python
280 lines
11 KiB
Python
import json
|
|
import unittest
|
|
from unittest import IsolatedAsyncioTestCase
|
|
from unittest.mock import AsyncMock, Mock, patch
|
|
|
|
from fastdeploy.entrypoints.openai.protocol import (
|
|
ChatCompletionRequest,
|
|
CompletionRequest,
|
|
)
|
|
from fastdeploy.entrypoints.openai.serving_chat import OpenAIServingChat
|
|
from fastdeploy.entrypoints.openai.serving_completion import OpenAIServingCompletion
|
|
|
|
|
|
class TestMaxStreamingResponseTokens(IsolatedAsyncioTestCase):
|
|
async def asyncSetUp(self):
|
|
self.engine_client = Mock()
|
|
self.engine_client.connection_initialized = False
|
|
self.engine_client.connection_manager = AsyncMock()
|
|
self.engine_client.connection_manager.initialize = AsyncMock()
|
|
self.engine_client.connection_manager.get_connection = AsyncMock()
|
|
self.engine_client.connection_manager.cleanup_request = AsyncMock()
|
|
self.engine_client.semaphore = Mock()
|
|
self.engine_client.semaphore.acquire = AsyncMock()
|
|
self.engine_client.semaphore.release = Mock()
|
|
self.engine_client.data_processor = Mock()
|
|
self.engine_client.is_master = True
|
|
|
|
self.chat_serving = OpenAIServingChat(
|
|
engine_client=self.engine_client,
|
|
models=None,
|
|
pid=123,
|
|
ips=None,
|
|
max_waiting_time=30,
|
|
chat_template="default",
|
|
enable_mm_output=False,
|
|
tokenizer_base_url=None,
|
|
)
|
|
|
|
self.completion_serving = OpenAIServingCompletion(
|
|
engine_client=self.engine_client, models=None, pid=123, ips=None, max_waiting_time=30
|
|
)
|
|
|
|
def test_metadata_parameter_setting(self):
|
|
request = ChatCompletionRequest(
|
|
model="test-model",
|
|
messages=[{"role": "user", "content": "Hello"}],
|
|
stream=True,
|
|
metadata={"max_streaming_response_tokens": 100},
|
|
)
|
|
|
|
max_tokens = (
|
|
request.max_streaming_response_tokens
|
|
if request.max_streaming_response_tokens is not None
|
|
else (request.metadata or {}).get("max_streaming_response_tokens", 1)
|
|
)
|
|
|
|
self.assertEqual(max_tokens, 100)
|
|
|
|
def test_default_value(self):
|
|
request = ChatCompletionRequest(
|
|
model="test-model", messages=[{"role": "user", "content": "Hello"}], stream=True
|
|
)
|
|
|
|
max_tokens = (
|
|
request.max_streaming_response_tokens
|
|
if request.max_streaming_response_tokens is not None
|
|
else (request.metadata or {}).get("max_streaming_response_tokens", 1)
|
|
)
|
|
|
|
self.assertEqual(max_tokens, 1)
|
|
|
|
def test_edge_case_zero_value(self):
|
|
request = ChatCompletionRequest(
|
|
model="test-model",
|
|
messages=[{"role": "user", "content": "Hello"}],
|
|
stream=True,
|
|
max_streaming_response_tokens=0,
|
|
)
|
|
|
|
max_streaming_response_tokens = (
|
|
request.max_streaming_response_tokens
|
|
if request.max_streaming_response_tokens is not None
|
|
else (request.metadata or {}).get("max_streaming_response_tokens", 1)
|
|
)
|
|
max_streaming_response_tokens = max(1, max_streaming_response_tokens)
|
|
|
|
self.assertEqual(max_streaming_response_tokens, 1)
|
|
|
|
@patch("fastdeploy.entrypoints.openai.serving_chat.api_server_logger")
|
|
@patch("fastdeploy.entrypoints.openai.serving_chat.ChatResponseProcessor")
|
|
async def test_integration_with_chat_stream_generator(self, mock_processor_class, mock_logger):
|
|
response_data = [
|
|
{
|
|
"outputs": {"token_ids": [1], "text": "a", "top_logprobs": None},
|
|
"metrics": {"first_token_time": 0.1, "inference_start_time": 0.1},
|
|
"finished": False,
|
|
},
|
|
{
|
|
"outputs": {"token_ids": [2], "text": "b", "top_logprobs": None},
|
|
"metrics": {"arrival_time": 0.2, "first_token_time": None},
|
|
"finished": False,
|
|
},
|
|
{
|
|
"outputs": {"token_ids": [3], "text": "c", "top_logprobs": None},
|
|
"metrics": {"arrival_time": 0.3, "first_token_time": None},
|
|
"finished": False,
|
|
},
|
|
{
|
|
"outputs": {"token_ids": [4], "text": "d", "top_logprobs": None},
|
|
"metrics": {"arrival_time": 0.4, "first_token_time": None},
|
|
"finished": False,
|
|
},
|
|
{
|
|
"outputs": {"token_ids": [5], "text": "e", "top_logprobs": None},
|
|
"metrics": {"arrival_time": 0.5, "first_token_time": None},
|
|
"finished": False,
|
|
},
|
|
{
|
|
"outputs": {"token_ids": [6], "text": "f", "top_logprobs": None},
|
|
"metrics": {"arrival_time": 0.6, "first_token_time": None},
|
|
"finished": False,
|
|
},
|
|
{
|
|
"outputs": {"token_ids": [7], "text": "g", "top_logprobs": None},
|
|
"metrics": {"arrival_time": 0.7, "first_token_time": None, "request_start_time": 0.1},
|
|
"finished": True,
|
|
},
|
|
]
|
|
|
|
mock_response_queue = AsyncMock()
|
|
mock_response_queue.get.side_effect = response_data
|
|
|
|
mock_dealer = Mock()
|
|
mock_dealer.write = Mock()
|
|
|
|
# Mock the connection manager call
|
|
self.engine_client.connection_manager.get_connection = AsyncMock(
|
|
return_value=(mock_dealer, mock_response_queue)
|
|
)
|
|
|
|
mock_processor_instance = Mock()
|
|
|
|
async def mock_process_response_chat_single(response, stream, enable_thinking, include_stop_str_in_output):
|
|
yield response
|
|
|
|
mock_processor_instance.process_response_chat = mock_process_response_chat_single
|
|
mock_processor_instance.enable_multimodal_content = Mock(return_value=False)
|
|
mock_processor_class.return_value = mock_processor_instance
|
|
|
|
request = ChatCompletionRequest(
|
|
model="test-model",
|
|
messages=[{"role": "user", "content": "Hello"}],
|
|
stream=True,
|
|
max_streaming_response_tokens=3,
|
|
)
|
|
|
|
generator = self.chat_serving.chat_completion_stream_generator(
|
|
request=request,
|
|
request_id="test-request-id",
|
|
model_name="test-model",
|
|
prompt_token_ids=[1, 2, 3],
|
|
text_after_process="Hello",
|
|
)
|
|
|
|
chunks = []
|
|
async for chunk in generator:
|
|
chunks.append(chunk)
|
|
|
|
self.assertGreater(len(chunks), 0, "No chucks!")
|
|
|
|
parsed_chunks = []
|
|
for i, chunk_str in enumerate(chunks):
|
|
if i == 0:
|
|
continue
|
|
if chunk_str.startswith("data: ") and chunk_str.endswith("\n\n"):
|
|
json_part = chunk_str[6:-2]
|
|
if json_part == "[DONE]":
|
|
parsed_chunks.append({"type": "done", "raw": chunk_str})
|
|
break
|
|
try:
|
|
chunk_dict = json.loads(json_part)
|
|
parsed_chunks.append(chunk_dict)
|
|
except json.JSONDecodeError as e:
|
|
self.fail(f"Cannot parser {i+1} chunk, JSON: {e}\n origin string: {repr(chunk_str)}")
|
|
else:
|
|
self.fail(f"{i+1} chunk is unexcepted 'data: JSON\\n\\n': {repr(chunk_str)}")
|
|
for chunk_dict in parsed_chunks:
|
|
choices_list = chunk_dict["choices"]
|
|
if choices_list[-1].get("finish_reason") is not None:
|
|
break
|
|
else:
|
|
self.assertEqual(len(choices_list), 3, f"Chunk {chunk_dict} should has three choices")
|
|
|
|
found_done = any("[DONE]" in chunk for chunk in chunks)
|
|
self.assertTrue(found_done, "Not Receive '[DONE]'")
|
|
|
|
@patch("fastdeploy.entrypoints.openai.serving_completion.api_server_logger")
|
|
async def test_integration_with_completion_stream_generator(self, mock_logger):
|
|
response_data = [
|
|
[
|
|
{
|
|
"request_id": "test-request-id-0",
|
|
"outputs": {"token_ids": [1], "text": "a", "top_logprobs": None},
|
|
"metrics": {"first_token_time": 0.1, "inference_start_time": 0.1},
|
|
"finished": False,
|
|
},
|
|
{
|
|
"request_id": "test-request-id-0",
|
|
"outputs": {"token_ids": [2], "text": "b", "top_logprobs": None},
|
|
"metrics": {"arrival_time": 0.2, "first_token_time": None},
|
|
"finished": False,
|
|
},
|
|
],
|
|
[
|
|
{
|
|
"request_id": "test-request-id-0",
|
|
"outputs": {"token_ids": [7], "text": "g", "top_logprobs": None},
|
|
"metrics": {"arrival_time": 0.7, "first_token_time": None, "request_start_time": 0.1},
|
|
"finished": True,
|
|
}
|
|
],
|
|
]
|
|
|
|
mock_response_queue = AsyncMock()
|
|
mock_response_queue.get.side_effect = response_data
|
|
|
|
mock_dealer = Mock()
|
|
mock_dealer.write = Mock()
|
|
|
|
# Mock the connection manager call
|
|
self.engine_client.connection_manager.get_connection = AsyncMock(
|
|
return_value=(mock_dealer, mock_response_queue)
|
|
)
|
|
|
|
request = CompletionRequest(model="test-model", prompt="Hello", stream=True, max_streaming_response_tokens=3)
|
|
|
|
generator = self.completion_serving.completion_stream_generator(
|
|
request=request,
|
|
num_choices=1,
|
|
request_id="test-request-id",
|
|
model_name="test-model",
|
|
created_time=11,
|
|
prompt_batched_token_ids=[[1, 2, 3]],
|
|
text_after_process_list=["Hello"],
|
|
)
|
|
|
|
chunks = []
|
|
async for chunk in generator:
|
|
chunks.append(chunk)
|
|
|
|
self.assertGreater(len(chunks), 0, "No chucks!")
|
|
|
|
parsed_chunks = []
|
|
for i, chunk_str in enumerate(chunks):
|
|
if chunk_str.startswith("data: ") and chunk_str.endswith("\n\n"):
|
|
json_part = chunk_str[6:-2]
|
|
if json_part == "[DONE]":
|
|
break
|
|
try:
|
|
chunk_dict = json.loads(json_part)
|
|
parsed_chunks.append(chunk_dict)
|
|
except json.JSONDecodeError as e:
|
|
self.fail(f"Cannot parser {i+1} chunk, JSON: {e}\n origin string: {repr(chunk_str)}")
|
|
else:
|
|
self.fail(f"{i+1} chunk is unexcepted 'data: JSON\\n\\n': {repr(chunk_str)}")
|
|
self.assertEqual(len(parsed_chunks), 1)
|
|
for chunk_dict in parsed_chunks:
|
|
choices_list = chunk_dict["choices"]
|
|
self.assertEqual(len(choices_list), 3, f"Chunk {chunk_dict} should has three choices")
|
|
self.assertEqual(
|
|
choices_list[-1].get("finish_reason"), "stop", f"Chunk {chunk_dict} should has stop reason"
|
|
)
|
|
|
|
found_done = any("[DONE]" in chunk for chunk in chunks)
|
|
self.assertTrue(found_done, "Not Receive '[DONE]'")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|