mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* move manager initialized_ flag to ppcls * update dbdetector preprocess api * declare processor op * ppocr detector preprocessor support cvcuda * move cvcuda op to class member * ppcls use manager register api * refactor det preprocessor init api * add set preprocessor api * add create processor macro * new processor call api * ppcls preprocessor init resize on cpu * ppocr detector preprocessor set normalize api * revert ppcls pybind * remove dbdetector set preprocessor * refine dbdetector preprocessor includes * remove mean std in py constructor * add comments * update comment * Update __init__.py
142 lines
5.1 KiB
Python
142 lines
5.1 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
import logging
|
|
from .... import FastDeployModel, ModelFormat
|
|
from .... import c_lib_wrap as C
|
|
from ...common import ProcessorManager
|
|
|
|
|
|
class PaddleClasPreprocessor(ProcessorManager):
|
|
def __init__(self, config_file):
|
|
"""Create a preprocessor for PaddleClasModel from configuration file
|
|
|
|
:param config_file: (str)Path of configuration file, e.g resnet50/inference_cls.yaml
|
|
"""
|
|
super(PaddleClasPreprocessor, self).__init__()
|
|
self._manager = C.vision.classification.PaddleClasPreprocessor(
|
|
config_file)
|
|
|
|
def disable_normalize(self):
|
|
"""
|
|
This function will disable normalize in preprocessing step.
|
|
"""
|
|
self._manager.disable_normalize()
|
|
|
|
def disable_permute(self):
|
|
"""
|
|
This function will disable hwc2chw in preprocessing step.
|
|
"""
|
|
self._manager.disable_permute()
|
|
|
|
def initial_resize_on_cpu(self, v):
|
|
"""
|
|
When the initial operator is Resize, and input image size is large,
|
|
maybe it's better to run resize on CPU, because the HostToDevice memcpy
|
|
is time consuming. Set this True to run the initial resize on CPU.
|
|
:param: v: True or False
|
|
"""
|
|
self._manager.initial_resize_on_cpu(v)
|
|
|
|
|
|
class PaddleClasPostprocessor:
|
|
def __init__(self, topk=1):
|
|
"""Create a postprocessor for PaddleClasModel
|
|
|
|
:param topk: (int)Filter the top k classify label
|
|
"""
|
|
self._postprocessor = C.vision.classification.PaddleClasPostprocessor(
|
|
topk)
|
|
|
|
def run(self, runtime_results):
|
|
"""Postprocess the runtime results for PaddleClasModel
|
|
|
|
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
|
:return: list of ClassifyResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
|
"""
|
|
return self._postprocessor.run(runtime_results)
|
|
|
|
|
|
class PaddleClasModel(FastDeployModel):
|
|
def __init__(self,
|
|
model_file,
|
|
params_file,
|
|
config_file,
|
|
runtime_option=None,
|
|
model_format=ModelFormat.PADDLE):
|
|
"""Load a image classification model exported by PaddleClas.
|
|
|
|
:param model_file: (str)Path of model file, e.g resnet50/inference.pdmodel
|
|
:param params_file: (str)Path of parameters file, e.g resnet50/inference.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
:param config_file: (str) Path of configuration file for deploy, e.g resnet50/inference_cls.yaml
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
"""
|
|
|
|
super(PaddleClasModel, self).__init__(runtime_option)
|
|
self._model = C.vision.classification.PaddleClasModel(
|
|
model_file, params_file, config_file, self._runtime_option,
|
|
model_format)
|
|
assert self.initialized, "PaddleClas model initialize failed."
|
|
|
|
def clone(self):
|
|
"""Clone PaddleClasModel object
|
|
|
|
:return: a new PaddleClasModel object
|
|
"""
|
|
|
|
class PaddleClasCloneModel(PaddleClasModel):
|
|
def __init__(self, model):
|
|
self._model = model
|
|
|
|
clone_model = PaddleClasCloneModel(self._model.clone())
|
|
return clone_model
|
|
|
|
def predict(self, im, topk=1):
|
|
"""Classify an input image
|
|
|
|
:param im: (numpy.ndarray) The input image data, a 3-D array with layout HWC, BGR format
|
|
:param topk: (int) Filter the topk classify result, default 1
|
|
:return: ClassifyResult
|
|
"""
|
|
|
|
self.postprocessor.topk = topk
|
|
return self._model.predict(im)
|
|
|
|
def batch_predict(self, images):
|
|
"""Classify a batch of input image
|
|
|
|
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
|
:return list of ClassifyResult
|
|
"""
|
|
|
|
return self._model.batch_predict(images)
|
|
|
|
@property
|
|
def preprocessor(self):
|
|
"""Get PaddleClasPreprocessor object of the loaded model
|
|
|
|
:return PaddleClasPreprocessor
|
|
"""
|
|
return self._model.preprocessor
|
|
|
|
@property
|
|
def postprocessor(self):
|
|
"""Get PaddleClasPostprocessor object of the loaded model
|
|
|
|
:return PaddleClasPostprocessor
|
|
"""
|
|
return self._model.postprocessor
|