Files
FastDeploy/csrc/fastdeploy/function/softmax.cc
Jack Zhou 391d66381f Remove eigen compliation option (#161)
Remove eigen option
2022-08-26 11:20:52 +08:00

124 lines
4.7 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/softmax.h"
#include <cstdlib>
#include "fastdeploy/function/eigen.h"
#include "fastdeploy/utils/axis_utils.h"
#include "fastdeploy/utils/utils.h"
namespace fastdeploy {
template <typename T>
struct ValueClip {
T operator()(const T& x) const {
const T kThreshold = static_cast<T>(-64.);
return x < kThreshold ? kThreshold : x;
}
};
template <typename T>
struct SoftmaxEigen {
void operator()(const FDTensor& x, FDTensor* out, int axis_dim) {
constexpr int kBatchDim = 0;
constexpr int kClassDim = 1;
constexpr int kAxisDim = 1;
auto logits = EigenMatrix<T>::From(x);
auto softmax = EigenMatrix<T>::From(*out);
const int batch_size = logits.dimension(kBatchDim);
const int num_classes = logits.dimension(kClassDim);
const int num_remain = num_classes / axis_dim;
Eigen::DSizes<int, 1> along_axis(kAxisDim);
Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
Eigen::DSizes<int, 2> one_by_class(1, num_classes);
Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
Eigen::DSizes<int, 2> one_axis(1, axis_dim);
Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
// For numerical stability, logits should be shifted by maximum number along
// axis, calculate shifted_logits into softmax tensor for memory reuse.
if (num_remain == 1) {
// axis == -1, axis and class in same dimension, calculate along
// class dimension directly for higher performance
softmax.device(dev) = (logits -
logits.maximum(along_axis)
.eval()
.reshape(batch_by_one)
.broadcast(one_by_class))
.unaryExpr(ValueClip<T>());
} else {
// axis != -1, class dimension split into (axis, remain), max and sum
// should be calculated along axis dimension
softmax.device(dev) = (logits.reshape(batch_axis_remain) -
logits.reshape(batch_axis_remain)
.maximum(along_axis)
.eval()
.reshape(batch_one_remain)
.broadcast(one_axis_one)
.reshape(batch_axis_remain))
.reshape(batch_classes)
.unaryExpr(ValueClip<T>());
}
softmax.device(dev) = softmax.exp();
softmax.device(dev) = (softmax *
softmax.reshape(batch_axis_remain)
.sum(along_axis)
.inverse()
.eval()
.broadcast(one_axis));
}
};
template <typename T>
void SoftmaxFunctor(const FDTensor& x, FDTensor* out, int axis) {
SoftmaxEigen<T>()(x, out, axis);
}
template <typename T>
void SoftmaxKernel(const FDTensor& x, FDTensor* out, int axis) {
const int rank = x.shape.size();
const int calc_axis = CanonicalAxis(axis, rank);
int axis_dim = x.shape[calc_axis];
out->Allocate(x.shape, x.dtype);
if (out->Numel() == 0) {
return;
}
const int n = SizeToAxis(calc_axis, x.shape);
const int d = SizeFromAxis(calc_axis, x.shape);
// Reshape to 2d tensor
FDTensor x_2d, out_2d;
x_2d.SetExternalData({n, d}, x.dtype, const_cast<void*>(x.Data()));
out_2d.SetExternalData({n, d}, out->dtype, out->Data());
SoftmaxFunctor<T>(x_2d, &out_2d, axis_dim);
}
void Softmax(const FDTensor& x, FDTensor* out, int axis) {
FDASSERT(
std::abs(axis) < x.shape.size(),
"The absolute given axis should be smaller than the input's "
"dimension. Expected absolute axis is smaller than %lu, but receive %d.",
x.shape.size(), std::abs(axis));
FD_VISIT_FLOAT_TYPES(x.dtype, "SoftmaxKernel",
([&] { SoftmaxKernel<data_t>(x, out, axis); }));
}
} // namespace fastdeploy