Files
FastDeploy/csrc/fastdeploy/backends/paddle/paddle_backend.cc
heliqi 4d1f264d01 FDTensor support GPU device (#190)
* fdtensor support GPU

* TRT backend support GPU FDTensor

* FDHostAllocator add FASTDEPLOY_DECL

* fix FDTensor Data

* fix FDTensor dtype

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-09-08 16:53:08 +08:00

122 lines
4.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/backends/paddle/paddle_backend.h"
namespace fastdeploy {
void PaddleBackend::BuildOption(const PaddleBackendOption& option) {
if (option.use_gpu) {
config_.EnableUseGpu(option.gpu_mem_init_size, option.gpu_id);
} else {
config_.DisableGpu();
if (option.enable_mkldnn) {
config_.EnableMKLDNN();
config_.SetMkldnnCacheCapacity(option.mkldnn_cache_size);
}
}
if (!option.enable_log_info) {
config_.DisableGlogInfo();
}
if (!option.delete_pass_names.empty()) {
auto pass_builder = config_.pass_builder();
for (int i = 0; i < option.delete_pass_names.size(); i++) {
FDINFO << "Delete pass : " << option.delete_pass_names[i] << std::endl;
pass_builder->DeletePass(option.delete_pass_names[i]);
}
}
if (option.cpu_thread_num <= 0) {
config_.SetCpuMathLibraryNumThreads(8);
} else {
config_.SetCpuMathLibraryNumThreads(option.cpu_thread_num);
}
}
bool PaddleBackend::InitFromPaddle(const std::string& model_file,
const std::string& params_file,
const PaddleBackendOption& option) {
if (initialized_) {
FDERROR << "PaddleBackend is already initlized, cannot initialize again."
<< std::endl;
return false;
}
config_.SetModel(model_file, params_file);
BuildOption(option);
predictor_ = paddle_infer::CreatePredictor(config_);
std::vector<std::string> input_names = predictor_->GetInputNames();
std::vector<std::string> output_names = predictor_->GetOutputNames();
for (size_t i = 0; i < input_names.size(); ++i) {
auto handle = predictor_->GetInputHandle(input_names[i]);
TensorInfo info;
auto shape = handle->shape();
info.shape.assign(shape.begin(), shape.end());
info.dtype = PaddleDataTypeToFD(handle->type());
info.name = input_names[i];
inputs_desc_.emplace_back(info);
}
for (size_t i = 0; i < output_names.size(); ++i) {
auto handle = predictor_->GetOutputHandle(output_names[i]);
TensorInfo info;
auto shape = handle->shape();
info.shape.assign(shape.begin(), shape.end());
info.dtype = PaddleDataTypeToFD(handle->type());
info.name = output_names[i];
outputs_desc_.emplace_back(info);
}
initialized_ = true;
return true;
}
TensorInfo PaddleBackend::GetInputInfo(int index) {
FDASSERT(index < NumInputs(),
"The index: %d should less than the number of inputs: %d.", index,
NumInputs());
return inputs_desc_[index];
}
std::vector<TensorInfo> PaddleBackend::GetInputInfo() { return inputs_desc_; }
TensorInfo PaddleBackend::GetOutputInfo(int index) {
FDASSERT(index < NumOutputs(),
"The index: %d should less than the number of outputs %d.", index,
NumOutputs());
return outputs_desc_[index];
}
std::vector<TensorInfo> PaddleBackend::GetOutputInfo() { return outputs_desc_; }
bool PaddleBackend::Infer(std::vector<FDTensor>& inputs,
std::vector<FDTensor>* outputs) {
if (inputs.size() != inputs_desc_.size()) {
FDERROR << "[PaddleBackend] Size of inputs(" << inputs.size()
<< ") should keep same with the inputs of this model("
<< inputs_desc_.size() << ")." << std::endl;
return false;
}
for (size_t i = 0; i < inputs.size(); ++i) {
auto handle = predictor_->GetInputHandle(inputs[i].name);
ShareTensorFromFDTensor(handle.get(), inputs[i]);
}
predictor_->Run();
outputs->resize(outputs_desc_.size());
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
auto handle = predictor_->GetOutputHandle(outputs_desc_[i].name);
CopyTensorToCpu(handle, &((*outputs)[i]));
}
return true;
}
} // namespace fastdeploy