mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 29628de6a7
			
		
	
	29628de6a7
	
	
	
		
			
			* Support for async processor added. * remove yappi code --------- Co-authored-by: Yuanle Liu <yuanlehome@163.com>
		
			
				
	
	
		
			650 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			650 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import asyncio
 | |
| import time
 | |
| import traceback
 | |
| import uuid
 | |
| from typing import List, Optional
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| from fastdeploy.engine.request import RequestOutput
 | |
| from fastdeploy.entrypoints.openai.protocol import (
 | |
|     CompletionLogprobs,
 | |
|     CompletionRequest,
 | |
|     CompletionResponse,
 | |
|     CompletionResponseChoice,
 | |
|     CompletionResponseStreamChoice,
 | |
|     CompletionStreamResponse,
 | |
|     ErrorResponse,
 | |
|     UsageInfo,
 | |
| )
 | |
| from fastdeploy.utils import api_server_logger
 | |
| from fastdeploy.worker.output import LogprobsLists
 | |
| 
 | |
| 
 | |
| class OpenAIServingCompletion:
 | |
|     def __init__(self, engine_client, models, pid, ips, max_waiting_time):
 | |
|         self.engine_client = engine_client
 | |
|         self.models = models
 | |
|         self.pid = pid
 | |
|         self.max_waiting_time = max_waiting_time
 | |
|         if ips is not None:
 | |
|             if isinstance(ips, list):
 | |
|                 self.master_ip = ips[0]
 | |
|             else:
 | |
|                 self.master_ip = ips.split(",")[0]
 | |
|         else:
 | |
|             self.master_ip = "0.0.0.0"
 | |
| 
 | |
|     async def _ensure_connection_manager(self):
 | |
|         """ensure connection manager initialized"""
 | |
|         if not self.engine_client.connection_initialized:
 | |
|             await self.engine_client.connection_manager.initialize()
 | |
|             self.engine_client.connection_initialized = True
 | |
| 
 | |
|     def _check_master(self):
 | |
|         return self.engine_client.is_master
 | |
| 
 | |
|     async def create_completion(self, request: CompletionRequest):
 | |
|         """
 | |
|         Create a completion for the given prompt.
 | |
|         """
 | |
|         if not self._check_master():
 | |
|             err_msg = (
 | |
|                 f"Only master node can accept completion request, please send request to master node: {self.master_ip}"
 | |
|             )
 | |
|             api_server_logger.error(err_msg)
 | |
|             return ErrorResponse(message=err_msg, code=400)
 | |
|         if self.models:
 | |
|             is_supported, request.model = self.models.is_supported_model(request.model)
 | |
|             if not is_supported:
 | |
|                 err_msg = f"Unsupported model: {request.model}, support {', '.join([x.name for x in self.models.model_paths])} or default"
 | |
|                 api_server_logger.error(err_msg)
 | |
|                 return ErrorResponse(message=err_msg, code=400)
 | |
|         created_time = int(time.time())
 | |
|         if request.user is not None:
 | |
|             request_id = f"cmpl-{request.user}-{uuid.uuid4()}"
 | |
|         else:
 | |
|             request_id = f"cmpl-{uuid.uuid4()}"
 | |
|         api_server_logger.info(f"Initialize request {request_id}: {request}")
 | |
|         request_prompt_ids = None
 | |
|         request_prompts = None
 | |
| 
 | |
|         # Handle prompt and prompt_token_ids
 | |
|         try:
 | |
|             if request.prompt_token_ids is not None:  # let `prompt_token_ids` support batch inference
 | |
|                 assert len(request.prompt_token_ids) > 0, "prompt_token_ids should not be an empty list"
 | |
|                 if isinstance(request.prompt_token_ids[0], list):
 | |
|                     request_prompt_ids = request.prompt_token_ids
 | |
|                 elif isinstance(request.prompt_token_ids[0], int):
 | |
|                     request_prompt_ids = [request.prompt_token_ids]
 | |
|                 else:
 | |
|                     raise ValueError(
 | |
|                         "If prompt_token_ids is provided, its type should be one of: list[int], list[list[int]]"
 | |
|                     )
 | |
|                 # reset `prompt_token_ids` to avoid data processor directly using it; let data processor fill it
 | |
|                 request.prompt_token_ids = None
 | |
|             else:
 | |
|                 if isinstance(request.prompt, str):
 | |
|                     request_prompts = [request.prompt]
 | |
|                 elif isinstance(request.prompt, list) and all(isinstance(item, int) for item in request.prompt):
 | |
|                     request_prompt_ids = [request.prompt]
 | |
|                 elif isinstance(request.prompt, list) and all(isinstance(item, str) for item in request.prompt):
 | |
|                     request_prompts = request.prompt
 | |
|                 elif isinstance(request.prompt, list):
 | |
|                     for item in request.prompt:
 | |
|                         if isinstance(item, list) and all(isinstance(x, int) for x in item):
 | |
|                             continue
 | |
|                         else:
 | |
|                             raise ValueError("If prompt is a list, each item type must be one of: str, list[int]")
 | |
|                     request_prompt_ids = request.prompt
 | |
|                 else:
 | |
|                     raise ValueError("Prompt type must be one of: str, list[str], list[int], list[list[int]]")
 | |
|         except Exception as e:
 | |
|             error_msg = f"OpenAIServingCompletion create_completion: {e}, {str(traceback.format_exc())}"
 | |
|             api_server_logger.error(error_msg)
 | |
|             return ErrorResponse(message=error_msg, code=400)
 | |
| 
 | |
|         if request_prompt_ids is not None:
 | |
|             request_prompts = request_prompt_ids
 | |
| 
 | |
|         num_choices = len(request_prompts)
 | |
|         api_server_logger.info(f"Start preprocessing request: req_id={request_id}), num_choices={num_choices}")
 | |
|         prompt_batched_token_ids = []
 | |
|         text_after_process_list = []
 | |
|         try:
 | |
|             if self.max_waiting_time < 0:
 | |
|                 await self.engine_client.semaphore.acquire()
 | |
|             else:
 | |
|                 await asyncio.wait_for(self.engine_client.semaphore.acquire(), timeout=self.max_waiting_time)
 | |
|         except Exception as e:
 | |
|             error_msg = (
 | |
|                 f"OpenAIServingCompletion waiting error: {e}, {str(traceback.format_exc())}, "
 | |
|                 f"max waiting time: {self.max_waiting_time}"
 | |
|             )
 | |
|             api_server_logger.error(error_msg)
 | |
|             return ErrorResponse(code=408, message=error_msg)
 | |
| 
 | |
|         try:
 | |
|             try:
 | |
|                 for idx, prompt in enumerate(request_prompts):
 | |
|                     request_id_idx = f"{request_id}-{idx}"
 | |
|                     current_req_dict = request.to_dict_for_infer(request_id_idx, prompt)
 | |
|                     current_req_dict["arrival_time"] = time.time()
 | |
|                     prompt_token_ids = await self.engine_client.format_and_add_data(current_req_dict)  # tokenize
 | |
|                     if isinstance(prompt_token_ids, np.ndarray):
 | |
|                         prompt_token_ids = prompt_token_ids.tolist()
 | |
|                     text_after_process_list.append(current_req_dict.get("text_after_process"))
 | |
|                     prompt_batched_token_ids.append(prompt_token_ids)
 | |
|                     del current_req_dict
 | |
|             except Exception as e:
 | |
|                 error_msg = f"OpenAIServingCompletion format error: {e}, {str(traceback.format_exc())}"
 | |
|                 api_server_logger.error(error_msg)
 | |
|                 self.engine_client.semaphore.release()
 | |
|                 return ErrorResponse(message=str(e), code=400)
 | |
| 
 | |
|             if request.stream:
 | |
|                 return self.completion_stream_generator(
 | |
|                     request=request,
 | |
|                     num_choices=num_choices,
 | |
|                     request_id=request_id,
 | |
|                     created_time=created_time,
 | |
|                     model_name=request.model,
 | |
|                     prompt_batched_token_ids=prompt_batched_token_ids,
 | |
|                     text_after_process_list=text_after_process_list,
 | |
|                 )
 | |
|             else:
 | |
|                 try:
 | |
|                     return await self.completion_full_generator(
 | |
|                         request=request,
 | |
|                         num_choices=num_choices,
 | |
|                         request_id=request_id,
 | |
|                         created_time=created_time,
 | |
|                         model_name=request.model,
 | |
|                         prompt_batched_token_ids=prompt_batched_token_ids,
 | |
|                         text_after_process_list=text_after_process_list,
 | |
|                     )
 | |
|                 except Exception as e:
 | |
|                     error_msg = (
 | |
|                         f"OpenAIServingCompletion completion_full_generator error: {e}, {str(traceback.format_exc())}"
 | |
|                     )
 | |
|                     api_server_logger.error(error_msg)
 | |
|                     return ErrorResponse(code=400, message=error_msg)
 | |
| 
 | |
|         except Exception as e:
 | |
|             error_msg = f"OpenAIServingCompletion create_completion error: {e}, {str(traceback.format_exc())}"
 | |
|             api_server_logger.error(error_msg)
 | |
|             return ErrorResponse(message=error_msg, code=400)
 | |
| 
 | |
|     async def completion_full_generator(
 | |
|         self,
 | |
|         request: CompletionRequest,
 | |
|         num_choices: int,
 | |
|         request_id: str,
 | |
|         created_time: int,
 | |
|         model_name: str,
 | |
|         prompt_batched_token_ids: list(),
 | |
|         text_after_process_list: list(),
 | |
|     ):
 | |
|         """
 | |
|         Process the full completion request with multiple choices.
 | |
|         """
 | |
|         dealer = None
 | |
|         try:
 | |
|             request_ids = [f"{request_id}-{i}" for i in range(num_choices)]
 | |
|             # create dealer
 | |
|             await self._ensure_connection_manager()
 | |
|             dealer, response_queue = await self.engine_client.connection_manager.get_connection(
 | |
|                 request_id, num_choices
 | |
|             )
 | |
| 
 | |
|             for rid in request_ids:
 | |
|                 dealer.write([b"", rid.encode("utf-8")])
 | |
| 
 | |
|             valid_results = [dict()] * num_choices
 | |
|             output_tokens = [0] * num_choices
 | |
|             aggregated_top_logprobs = [[[], [], []] for _ in range(num_choices)]
 | |
|             aggregated_token_ids = [[] for _ in range(num_choices)]
 | |
|             completion_batched_token_ids = [[] for _ in range(num_choices)]
 | |
|             current_waiting_time = 0
 | |
|             while num_choices > 0:
 | |
|                 try:
 | |
|                     response = await asyncio.wait_for(response_queue.get(), timeout=10)
 | |
|                     current_waiting_time = 0
 | |
|                 except asyncio.TimeoutError:
 | |
|                     current_waiting_time += 10
 | |
|                     if current_waiting_time == 300:
 | |
|                         status, msg = self.engine_client.check_health()
 | |
|                         if not status:
 | |
|                             raise ValueError(f"Engine is not healthy: {msg}")
 | |
|                         else:
 | |
|                             current_waiting_time = 0
 | |
|                     await asyncio.sleep(0.1)
 | |
|                     continue
 | |
| 
 | |
|                 for data in response:
 | |
|                     rid = int(data["request_id"].split("-")[-1])
 | |
|                     if data.get("error_code", 200) != 200:
 | |
|                         raise ValueError("{}".format(data["error_msg"]))
 | |
| 
 | |
|                     output = data["outputs"]
 | |
|                     output_top_logprobs = output["top_logprobs"]
 | |
|                     if output_top_logprobs is not None:
 | |
|                         aggregated_top_logprobs[rid][0].extend(output_top_logprobs[0])
 | |
|                         aggregated_top_logprobs[rid][1].extend(output_top_logprobs[1])
 | |
|                         aggregated_top_logprobs[rid][2].extend(output_top_logprobs[2])
 | |
| 
 | |
|                     aggregated_token_ids[rid].extend(data["outputs"]["token_ids"])
 | |
| 
 | |
|                     self.engine_client.data_processor.process_response_dict(
 | |
|                         data, stream=False, include_stop_str_in_output=request.include_stop_str_in_output
 | |
|                     )
 | |
|                     output_tokens[rid] += len(data["outputs"]["token_ids"])
 | |
|                     completion_batched_token_ids[rid].extend(data["outputs"]["token_ids"])
 | |
|                     if data.get("finished", False):
 | |
|                         data["output_token_ids"] = output_tokens[rid]
 | |
|                         data["outputs"]["top_logprobs"] = aggregated_top_logprobs[rid]
 | |
|                         data["outputs"]["token_ids"] = aggregated_token_ids[rid]
 | |
|                         valid_results[rid] = data
 | |
|                         num_choices -= 1
 | |
|                         break
 | |
|             res = self.request_output_to_completion_response(
 | |
|                 final_res_batch=valid_results,
 | |
|                 request=request,
 | |
|                 request_id=request_id,
 | |
|                 created_time=created_time,
 | |
|                 model_name=model_name,
 | |
|                 prompt_batched_token_ids=prompt_batched_token_ids,
 | |
|                 completion_batched_token_ids=completion_batched_token_ids,
 | |
|                 text_after_process_list=text_after_process_list,
 | |
|             )
 | |
|             api_server_logger.info(f"Completion response: {res.model_dump_json()}")
 | |
|             return res
 | |
|         except Exception as e:
 | |
|             api_server_logger.error(f"Error in completion_full_generator: {e}", exc_info=True)
 | |
|             raise
 | |
|         finally:
 | |
|             self.engine_client.semaphore.release()
 | |
|             if dealer is not None:
 | |
|                 await self.engine_client.connection_manager.cleanup_request(request_id)
 | |
| 
 | |
|     async def _echo_back_prompt(self, request, res, idx):
 | |
|         if res["outputs"].get("send_idx", -1) == 0 and request.echo:
 | |
|             if isinstance(request.prompt, list):
 | |
|                 prompt_text = request.prompt[idx]
 | |
|             else:
 | |
|                 prompt_text = request.prompt
 | |
|             res["outputs"]["text"] = prompt_text + (res["outputs"]["text"] or "")
 | |
| 
 | |
|     def calc_finish_reason(self, max_tokens, token_num, output, tool_called):
 | |
|         if max_tokens is None or token_num != max_tokens:
 | |
|             if tool_called or output.get("tool_call"):
 | |
|                 return "tool_calls"
 | |
|             else:
 | |
|                 return "stop"
 | |
|         else:
 | |
|             return "length"
 | |
| 
 | |
|     async def completion_stream_generator(
 | |
|         self,
 | |
|         request: CompletionRequest,
 | |
|         num_choices: int,
 | |
|         request_id: str,
 | |
|         created_time: int,
 | |
|         model_name: str,
 | |
|         prompt_batched_token_ids: list(),
 | |
|         text_after_process_list: list(),
 | |
|     ):
 | |
|         """
 | |
|         Process the stream completion request.
 | |
|         """
 | |
|         try:
 | |
|             await self._ensure_connection_manager()
 | |
|             dealer, response_queue = await self.engine_client.connection_manager.get_connection(
 | |
|                 request_id, num_choices
 | |
|             )
 | |
| 
 | |
|             for i in range(num_choices):
 | |
|                 req_id = f"{request_id}-{i}"
 | |
|                 dealer.write([b"", req_id.encode("utf-8")])  # 发送多路请求
 | |
|             output_tokens = [0] * num_choices
 | |
|             inference_start_time = [0] * num_choices
 | |
|             first_iteration = [True] * num_choices
 | |
|             tool_called = [False] * num_choices
 | |
|             max_streaming_response_tokens = (
 | |
|                 request.max_streaming_response_tokens
 | |
|                 if request.max_streaming_response_tokens is not None
 | |
|                 else (request.suffix or {}).get("max_streaming_response_tokens", 1)
 | |
|             )  # dierctly passed & passed in suffix
 | |
|             max_streaming_response_tokens = max(1, max_streaming_response_tokens)
 | |
|             choices = []
 | |
|             chunk = CompletionStreamResponse(
 | |
|                 id=request_id,
 | |
|                 created=created_time,
 | |
|                 model=model_name,
 | |
|                 choices=choices,
 | |
|             )
 | |
|             current_waiting_time = 0
 | |
|             while num_choices > 0:
 | |
|                 try:
 | |
|                     response = await asyncio.wait_for(response_queue.get(), timeout=10)
 | |
|                     current_waiting_time = 0
 | |
|                 except asyncio.TimeoutError:
 | |
|                     current_waiting_time += 10
 | |
|                     if current_waiting_time == 300:
 | |
|                         status, msg = self.engine_client.check_health()
 | |
|                         if not status:
 | |
|                             raise ValueError(f"Engine is not healthy: {msg}")
 | |
|                         else:
 | |
|                             current_waiting_time = 0
 | |
|                     await asyncio.sleep(0.1)
 | |
|                     continue
 | |
| 
 | |
|                 for res in response:
 | |
|                     idx = int(res["request_id"].split("-")[-1])
 | |
|                     if res.get("error_code", 200) != 200:
 | |
|                         raise ValueError("{}".format(res["error_msg"]))
 | |
| 
 | |
|                     if first_iteration[idx]:
 | |
|                         if request.return_token_ids:
 | |
|                             chunk = CompletionStreamResponse(
 | |
|                                 id=request_id,
 | |
|                                 created=created_time,
 | |
|                                 model=model_name,
 | |
|                                 choices=[
 | |
|                                     CompletionResponseStreamChoice(
 | |
|                                         index=idx,
 | |
|                                         text="",
 | |
|                                         prompt_token_ids=list(prompt_batched_token_ids[idx]),
 | |
|                                         text_after_process=text_after_process_list[idx],
 | |
|                                         prompt_tokens=text_after_process_list[idx],
 | |
|                                         completion_token_ids=None,
 | |
|                                     )
 | |
|                                 ],
 | |
|                             )
 | |
|                             yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
|                             api_server_logger.info(
 | |
|                                 f"Completion Streaming response send_idx 0: {chunk.model_dump_json()}"
 | |
|                             )
 | |
|                         first_iteration[idx] = False
 | |
| 
 | |
|                     self.engine_client.data_processor.process_response_dict(
 | |
|                         res, stream=True, include_stop_str_in_output=request.include_stop_str_in_output
 | |
|                     )
 | |
|                     if res["metrics"].get("first_token_time") is not None:
 | |
|                         arrival_time = res["metrics"]["first_token_time"]
 | |
|                         inference_start_time[idx] = res["metrics"]["inference_start_time"]
 | |
|                     else:
 | |
|                         arrival_time = res["metrics"]["arrival_time"] - inference_start_time[idx]
 | |
| 
 | |
|                     await self._echo_back_prompt(request, res, idx)
 | |
|                     output = res["outputs"]
 | |
|                     output_top_logprobs = output["top_logprobs"]
 | |
|                     logprobs_res: Optional[CompletionLogprobs] = None
 | |
|                     if request.logprobs and output_top_logprobs is not None:
 | |
|                         logprobs_res = self._create_completion_logprobs(output_top_logprobs, request.logprobs, 0)
 | |
| 
 | |
|                     output_tokens[idx] += 1
 | |
|                     delta_message = CompletionResponseStreamChoice(
 | |
|                         index=idx,
 | |
|                         text=output["text"],
 | |
|                         prompt_token_ids=None,
 | |
|                         completion_token_ids=output.get("token_ids") if request.return_token_ids else None,
 | |
|                         tool_calls=None,
 | |
|                         raw_prediction=output.get("raw_prediction") if request.return_token_ids else None,
 | |
|                         completion_tokens=output.get("raw_prediction") if request.return_token_ids else None,
 | |
|                         reasoning_content="",
 | |
|                         arrival_time=arrival_time,
 | |
|                         logprobs=logprobs_res,
 | |
|                     )
 | |
|                     if not res["finished"] and "delta_message" in output:
 | |
|                         delta_message_output = output["delta_message"]
 | |
|                         if delta_message_output is None:
 | |
|                             continue
 | |
|                         delta_message.text = delta_message_output.content or ""
 | |
|                         delta_message.reasoning_content = delta_message_output.reasoning_content or ""
 | |
|                         if delta_message_output.tool_calls:
 | |
|                             delta_message.tool_calls = delta_message_output.tool_calls
 | |
|                             tool_called[idx] = True
 | |
| 
 | |
|                     choices.append(delta_message)
 | |
| 
 | |
|                     if res["finished"]:
 | |
|                         choices[-1].finish_reason = self.calc_finish_reason(
 | |
|                             request.max_tokens, output_tokens[idx], output, tool_called[idx]
 | |
|                         )
 | |
|                     send_idx = output.get("send_idx")
 | |
|                     # 只有当 send_idx 明确为 0 时才记录日志
 | |
|                     if send_idx == 0 and not request.return_token_ids:
 | |
|                         chunk_temp = chunk
 | |
|                         chunk_temp.choices = choices
 | |
|                         api_server_logger.info(
 | |
|                             f"Completion Streaming response send_idx 0: {chunk_temp.model_dump_json()}"
 | |
|                         )
 | |
|                         del chunk_temp
 | |
| 
 | |
|                     if len(choices) == max_streaming_response_tokens or res["finished"]:
 | |
|                         chunk = CompletionStreamResponse(
 | |
|                             id=request_id,
 | |
|                             created=created_time,
 | |
|                             model=model_name,
 | |
|                             choices=choices,
 | |
|                         )
 | |
|                         yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
|                         choices = []
 | |
| 
 | |
|                     if res["finished"]:
 | |
|                         num_choices -= 1
 | |
|                         if getattr(request, "stream_options", None) and request.stream_options.include_usage:
 | |
|                             usage_chunk = CompletionStreamResponse(
 | |
|                                 id=request_id,
 | |
|                                 created=created_time,
 | |
|                                 model=model_name,
 | |
|                                 choices=[],
 | |
|                                 usage=UsageInfo(
 | |
|                                     prompt_tokens=len(prompt_batched_token_ids[idx]),
 | |
|                                     completion_tokens=output_tokens[idx],
 | |
|                                     total_tokens=len(prompt_batched_token_ids[idx]) + output_tokens[idx],
 | |
|                                 ),
 | |
|                             )
 | |
|                             yield f"data: {usage_chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
|                         api_server_logger.info(f"Completion Streaming response last send: {chunk.model_dump_json()}")
 | |
| 
 | |
|         except Exception as e:
 | |
|             api_server_logger.error(f"Error in completion_stream_generator: {e}, {str(traceback.format_exc())}")
 | |
|             yield f"data: {ErrorResponse(message=str(e), code=400).model_dump_json(exclude_unset=True)}\n\n"
 | |
|         finally:
 | |
|             del request
 | |
|             if dealer is not None:
 | |
|                 await self.engine_client.connection_manager.cleanup_request(request_id)
 | |
|                 self.engine_client.semaphore.release()
 | |
|             yield "data: [DONE]\n\n"
 | |
| 
 | |
|     def request_output_to_completion_response(
 | |
|         self,
 | |
|         final_res_batch: List[RequestOutput],
 | |
|         request: CompletionRequest,
 | |
|         request_id: str,
 | |
|         created_time: int,
 | |
|         model_name: str,
 | |
|         prompt_batched_token_ids: list(),
 | |
|         completion_batched_token_ids: list(),
 | |
|         text_after_process_list: list(),
 | |
|     ) -> CompletionResponse:
 | |
|         choices: List[CompletionResponseChoice] = []
 | |
|         num_prompt_tokens = 0
 | |
|         num_generated_tokens = 0
 | |
| 
 | |
|         for idx in range(len(final_res_batch)):
 | |
|             final_res = final_res_batch[idx]
 | |
|             prompt_token_ids = prompt_batched_token_ids[idx]
 | |
|             assert prompt_token_ids is not None
 | |
|             prompt_text = request.prompt
 | |
|             completion_token_ids = completion_batched_token_ids[idx]
 | |
| 
 | |
|             output = final_res["outputs"]
 | |
|             output_top_logprobs = output["top_logprobs"]
 | |
| 
 | |
|             aggregated_logprobs: Optional[CompletionLogprobs] = None
 | |
|             if output_top_logprobs is not None:
 | |
|                 aggregated_logprobs = self._create_completion_logprobs(output_top_logprobs, request.logprobs, 0)
 | |
| 
 | |
|             if request.echo:
 | |
|                 assert prompt_text is not None
 | |
|                 token_ids = [*prompt_token_ids, *output["token_ids"]]
 | |
|                 if isinstance(prompt_text, list):
 | |
|                     output_text = prompt_text[idx] + output["text"]
 | |
|                 else:
 | |
|                     output_text = str(prompt_text) + output["text"]
 | |
|             else:
 | |
|                 token_ids = output["token_ids"]
 | |
|                 output_text = output["text"]
 | |
|             finish_reason = self.calc_finish_reason(request.max_tokens, final_res["output_token_ids"], output, False)
 | |
| 
 | |
|             choice_data = CompletionResponseChoice(
 | |
|                 token_ids=token_ids,
 | |
|                 index=len(choices),
 | |
|                 text=output_text,
 | |
|                 prompt_token_ids=prompt_token_ids if request.return_token_ids else None,
 | |
|                 completion_token_ids=completion_token_ids if request.return_token_ids else None,
 | |
|                 raw_prediction=output.get("raw_prediction") if request.return_token_ids else None,
 | |
|                 completion_tokens=output.get("raw_prediction") if request.return_token_ids else None,
 | |
|                 text_after_process=text_after_process_list[idx] if request.return_token_ids else None,
 | |
|                 prompt_tokens=text_after_process_list[idx] if request.return_token_ids else None,
 | |
|                 reasoning_content=output.get("reasoning_content"),
 | |
|                 tool_calls=output.get("tool_call"),
 | |
|                 logprobs=aggregated_logprobs,
 | |
|                 finish_reason=finish_reason,
 | |
|             )
 | |
|             choices.append(choice_data)
 | |
| 
 | |
|             num_generated_tokens += final_res["output_token_ids"]
 | |
| 
 | |
|             num_prompt_tokens += len(prompt_token_ids)
 | |
| 
 | |
|         usage = UsageInfo(
 | |
|             prompt_tokens=num_prompt_tokens,
 | |
|             completion_tokens=num_generated_tokens,
 | |
|             total_tokens=num_prompt_tokens + num_generated_tokens,
 | |
|         )
 | |
|         del request
 | |
| 
 | |
|         return CompletionResponse(
 | |
|             id=request_id,
 | |
|             created=created_time,
 | |
|             model=model_name,
 | |
|             choices=choices,
 | |
|             usage=usage,
 | |
|         )
 | |
| 
 | |
|     def _create_completion_logprobs(
 | |
|         self,
 | |
|         output_top_logprobs,
 | |
|         request_logprobs: Optional[int] = None,
 | |
|         prompt_text_offset: Optional[int] = None,
 | |
|     ) -> Optional[CompletionLogprobs]:
 | |
|         """Create OpenAI-style logprobs for completions."""
 | |
| 
 | |
|         # Parameter validation
 | |
|         if output_top_logprobs is None or len(output_top_logprobs) < 3 or any(not lst for lst in output_top_logprobs):
 | |
|             return None
 | |
| 
 | |
|         logprobs_res: Optional[CompletionLogprobs] = None
 | |
|         # Iterate over the top-k candidates for each token
 | |
|         for logprob_token_ids, logprobs, sampled_token_ranks in zip(
 | |
|             output_top_logprobs[0], output_top_logprobs[1], output_top_logprobs[2]
 | |
|         ):
 | |
|             top_logprobs = LogprobsLists(
 | |
|                 logprob_token_ids=[logprob_token_ids],
 | |
|                 logprobs=[logprobs],
 | |
|                 sampled_token_ranks=[sampled_token_ranks],
 | |
|             )
 | |
|             # Build the logprobs response
 | |
|             step_logprobs_res = self._build_logprobs_response(
 | |
|                 response_logprobs=top_logprobs,
 | |
|                 request_top_logprobs=request_logprobs,
 | |
|                 prompt_text_offset=prompt_text_offset,
 | |
|             )
 | |
|             if logprobs_res is None:
 | |
|                 logprobs_res = step_logprobs_res
 | |
|             else:
 | |
|                 # Append the new tokens to the existing logprobs response
 | |
|                 logprobs_res.tokens.extend(step_logprobs_res.tokens)
 | |
|                 logprobs_res.token_logprobs.extend(step_logprobs_res.token_logprobs)
 | |
|                 logprobs_res.top_logprobs.extend(step_logprobs_res.top_logprobs)
 | |
| 
 | |
|         return logprobs_res
 | |
| 
 | |
|     def _build_logprobs_response(
 | |
|         self,
 | |
|         response_logprobs: Optional[LogprobsLists] = None,
 | |
|         request_top_logprobs: Optional[int] = None,
 | |
|         prompt_text_offset: Optional[int] = None,
 | |
|     ) -> Optional[CompletionLogprobs]:
 | |
|         """
 | |
|         Construct a logprobs response object in line with the OpenAI style.
 | |
|         Retain the complete top-k candidates and avoid circular references.
 | |
|         """
 | |
| 
 | |
|         # Parameter validation
 | |
|         if response_logprobs is None or request_top_logprobs is None or request_top_logprobs < 0:
 | |
|             return None
 | |
| 
 | |
|         try:
 | |
|             # The top-k candidates for the current token
 | |
|             topk_token_ids = []
 | |
|             topk_logprobs = []
 | |
| 
 | |
|             if response_logprobs.logprob_token_ids and len(response_logprobs.logprob_token_ids) > 0:
 | |
|                 topk_token_ids = response_logprobs.logprob_token_ids[0][: request_top_logprobs + 1]
 | |
| 
 | |
|             if response_logprobs.logprobs and len(response_logprobs.logprobs) > 0:
 | |
|                 topk_logprobs = response_logprobs.logprobs[0][: request_top_logprobs + 1]
 | |
| 
 | |
|             # Construct the sampled token object (avoid sharing references with top_logprob_entries)
 | |
|             tokens = []
 | |
|             token_logprobs = []
 | |
|             top_logprobs = {}
 | |
|             idx = 0
 | |
|             for tid, lp in zip(topk_token_ids, topk_logprobs):
 | |
|                 token_str = self.engine_client.data_processor.process_logprob_response(
 | |
|                     [tid], clean_up_tokenization_spaces=False
 | |
|                 )
 | |
|                 if "\ufffd" in token_str:
 | |
|                     token_bytes = token_str.encode("utf-8", errors="replace")
 | |
|                     token_str = "bytes:" + "".join(f"\\x{byte:02x}" for byte in token_bytes)
 | |
|                 if idx == 0:
 | |
|                     tokens.append(token_str)
 | |
|                     token_logprobs.append(lp)
 | |
|                 else:
 | |
|                     top_logprobs[token_str] = lp
 | |
|                 idx += 1
 | |
| 
 | |
|             # Construct the sampled token object (avoid sharing references with top_logprob_entries)
 | |
|             # text_offset = prompt_text_offset + len(tokens) - 1
 | |
|             return CompletionLogprobs(
 | |
|                 tokens=tokens,
 | |
|                 token_logprobs=token_logprobs,
 | |
|                 top_logprobs=[top_logprobs],
 | |
|                 # text_offset=[text_offset],
 | |
|             )
 | |
| 
 | |
|         except Exception as e:
 | |
|             api_server_logger.error(f"Error in _build_logprobs_response: {str(e)}, {str(traceback.format_exc())}")
 | |
|             return None
 |