mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
63 lines
1.8 KiB
Python
63 lines
1.8 KiB
Python
"""
|
||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
|
||
import time
|
||
import os
|
||
import subprocess
|
||
import signal
|
||
|
||
from fastdeploy.entrypoints.llm import LLM
|
||
from fastdeploy.engine.sampling_params import SamplingParams
|
||
|
||
|
||
model_name_or_path = "./models/eb45t02/"
|
||
|
||
|
||
|
||
prefill_cmd = (f"FD_LOG_DIR=log_prefill CUDA_VISIBLE_DEVICES=0,1,2,3 python fastdeploy.entrypoints.openai.api_server.py"
|
||
+ f" --model {model_name_or_path} --port 9811"
|
||
+ f" --splitwise-role prefill --tensor-parallel-size 4"
|
||
+ f" --engine-worker-queue-port 6676 --cache-queue-port 55663")
|
||
|
||
prefill_instance = subprocess.Popen(
|
||
prefill_cmd,
|
||
stdout=subprocess.PIPE,
|
||
shell=True,
|
||
preexec_fn=os.setsid,
|
||
)
|
||
|
||
|
||
|
||
|
||
# # 超参设置
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = "4,5,6,7"
|
||
os.environ["FD_LOG_DIR"] = "log_decode"
|
||
sampling_params = SamplingParams(temperature=0.1, max_tokens=30)
|
||
llm_decode = LLM(
|
||
model=model_name_or_path,
|
||
tensor_parallel_size=4,
|
||
splitwise_role="decode",
|
||
engine_worker_queue_port=6678,
|
||
innode_prefill_ports=[6676],
|
||
cache_queue_port=55668
|
||
)
|
||
|
||
|
||
output = llm_decode.generate(prompts=["who are you?", "what can you do?"], use_tqdm=True)
|
||
print(output)
|
||
|
||
|
||
os.killpg(prefill_instance.pid, signal.SIGTERM) |