mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 aa6931bee9
			
		
	
	aa6931bee9
	
	
	
		
			
			* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			121 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			121 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import fastdeploy as fd
 | |
| import copy
 | |
| import cv2
 | |
| import os
 | |
| import pickle
 | |
| import numpy as np
 | |
| import runtime_config as rc
 | |
| 
 | |
| 
 | |
| def test_detection_mask_rcnn():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/mask_rcnn_r50_1x_coco.tgz"
 | |
|     input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
 | |
|     result_url = "https://bj.bcebos.com/fastdeploy/tests/data/mask_rcnn_baseline.pkl"
 | |
|     fd.download_and_decompress(model_url, "resources")
 | |
|     fd.download(input_url1, "resources")
 | |
|     fd.download(result_url, "resources")
 | |
|     model_path = "resources/mask_rcnn_r50_1x_coco"
 | |
| 
 | |
|     model_file = os.path.join(model_path, "model.pdmodel")
 | |
|     params_file = os.path.join(model_path, "model.pdiparams")
 | |
|     config_file = os.path.join(model_path, "infer_cfg.yml")
 | |
|     model = fd.vision.detection.MaskRCNN(
 | |
|         model_file, params_file, config_file, runtime_option=rc.test_option)
 | |
| 
 | |
|     # compare diff
 | |
|     im1 = cv2.imread("./resources/000000014439.jpg")
 | |
|     for i in range(2):
 | |
|         with open("resources/mask_rcnn_baseline.pkl", "rb") as f:
 | |
|             boxes, scores, label_ids = pickle.load(f)
 | |
|         result = model.predict(im1)
 | |
|         pred_boxes = np.array(result.boxes)
 | |
|         pred_scores = np.array(result.scores)
 | |
|         pred_label_ids = np.array(result.label_ids)
 | |
| 
 | |
|         diff_boxes = np.fabs(boxes - pred_boxes)
 | |
|         diff_scores = np.fabs(scores - pred_scores)
 | |
|         diff_label_ids = np.fabs(label_ids - pred_label_ids)
 | |
| 
 | |
|         print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
 | |
| 
 | |
|         score_threshold = 0.0
 | |
|         assert diff_boxes[scores > score_threshold].max(
 | |
|         ) < 1e-01, "There's diff in boxes."
 | |
|         assert diff_scores[scores > score_threshold].max(
 | |
|         ) < 1e-02, "There's diff in scores."
 | |
|         assert diff_label_ids[scores > score_threshold].max(
 | |
|         ) < 1e-04, "There's diff in label_ids."
 | |
| 
 | |
| 
 | |
| def test_detection_mask_rcnn1():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/mask_rcnn_r50_1x_coco.tgz"
 | |
|     input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
 | |
|     result_url = "https://bj.bcebos.com/fastdeploy/tests/data/mask_rcnn_baseline.pkl"
 | |
|     fd.download_and_decompress(model_url, "resources")
 | |
|     fd.download(input_url1, "resources")
 | |
|     fd.download(result_url, "resources")
 | |
|     model_path = "resources/mask_rcnn_r50_1x_coco"
 | |
| 
 | |
|     model_file = os.path.join(model_path, "model.pdmodel")
 | |
|     params_file = os.path.join(model_path, "model.pdiparams")
 | |
|     config_file = os.path.join(model_path, "infer_cfg.yml")
 | |
|     preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
 | |
|     postprocessor = fd.vision.detection.PaddleDetPostprocessor()
 | |
| 
 | |
|     option = rc.test_option
 | |
|     option.set_model_path(model_file, params_file)
 | |
|     option.use_paddle_infer_backend()
 | |
|     runtime = fd.Runtime(option)
 | |
| 
 | |
|     # compare diff
 | |
|     im1 = cv2.imread("./resources/000000014439.jpg")
 | |
|     for i in range(2):
 | |
|         im1 = cv2.imread("./resources/000000014439.jpg")
 | |
|         input_tensors = preprocessor.run([im1])
 | |
|         output_tensors = runtime.infer({
 | |
|             "image": input_tensors[0],
 | |
|             "scale_factor": input_tensors[1],
 | |
|             "im_shape": input_tensors[2]
 | |
|         })
 | |
|         results = postprocessor.run(output_tensors)
 | |
|         result = results[0]
 | |
| 
 | |
|         with open("resources/mask_rcnn_baseline.pkl", "rb") as f:
 | |
|             boxes, scores, label_ids = pickle.load(f)
 | |
|         pred_boxes = np.array(result.boxes)
 | |
|         pred_scores = np.array(result.scores)
 | |
|         pred_label_ids = np.array(result.label_ids)
 | |
| 
 | |
|         diff_boxes = np.fabs(boxes - pred_boxes)
 | |
|         diff_scores = np.fabs(scores - pred_scores)
 | |
|         diff_label_ids = np.fabs(label_ids - pred_label_ids)
 | |
| 
 | |
|         print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
 | |
| 
 | |
|         score_threshold = 0.0
 | |
|         assert diff_boxes[scores > score_threshold].max(
 | |
|         ) < 1e-01, "There's diff in boxes."
 | |
|         assert diff_scores[scores > score_threshold].max(
 | |
|         ) < 1e-02, "There's diff in scores."
 | |
|         assert diff_label_ids[scores > score_threshold].max(
 | |
|         ) < 1e-04, "There's diff in label_ids."
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_detection_mask_rcnn()
 | |
|     test_detection_mask_rcnn1()
 |