mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
141 lines
4.8 KiB
C++
141 lines
4.8 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <vector>
|
|
#include "fastdeploy/core/fd_tensor.h"
|
|
#include "fastdeploy/utils/axis_utils.h"
|
|
#include "unsupported/Eigen/CXX11/Tensor"
|
|
|
|
namespace fastdeploy {
|
|
namespace function {
|
|
// EigenDim converts shape into Eigen::DSizes.
|
|
template <int D>
|
|
struct EigenDim {
|
|
using Type = Eigen::DSizes<Eigen::DenseIndex, D>;
|
|
|
|
static Type From(const std::vector<int64_t>& dims) {
|
|
Type ret;
|
|
for (int64_t d = 0; d < dims.size(); d++) {
|
|
ret[d] = dims[d];
|
|
}
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
// Interpret FDTensor as EigenTensor and EigenConstTensor.
|
|
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
struct EigenTensor {
|
|
using Type = Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, IndexType>>;
|
|
|
|
using ConstType =
|
|
Eigen::TensorMap<Eigen::Tensor<const T, D, MajorType, IndexType>>;
|
|
|
|
static Type From(FDTensor& tensor,
|
|
const std::vector<int64_t>& dims) { // NOLINT
|
|
return Type(reinterpret_cast<T*>(tensor.Data()), EigenDim<D>::From(dims));
|
|
}
|
|
|
|
static Type From(FDTensor& tensor) { // NOLINT
|
|
return From(tensor, tensor.shape);
|
|
} // NOLINT
|
|
|
|
static ConstType From(const FDTensor& tensor,
|
|
const std::vector<int64_t>& dims) {
|
|
return ConstType(reinterpret_cast<const T*>(tensor.Data()),
|
|
EigenDim<D>::From(dims));
|
|
}
|
|
|
|
static ConstType From(const FDTensor& tensor) {
|
|
return From(tensor, tensor.shape);
|
|
}
|
|
};
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
struct EigenScalar {
|
|
// Scalar tensor (implemented as a rank-0 tensor) of scalar type T.
|
|
using Type = Eigen::TensorMap<
|
|
Eigen::TensorFixedSize<T, Eigen::Sizes<>, MajorType, IndexType>>;
|
|
using ConstType = Eigen::TensorMap<
|
|
Eigen::TensorFixedSize<const T, Eigen::Sizes<>, MajorType, IndexType>>;
|
|
|
|
static Type From(FDTensor& tensor) {
|
|
return Type(reinterpret_cast<T*>(tensor.Data()));
|
|
} // NOLINT
|
|
|
|
static ConstType From(const FDTensor& tensor) {
|
|
return ConstType(reinterpret_cast<const T*>(tensor.Data()));
|
|
}
|
|
};
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> {
|
|
// Flatten reshapes a Tensor into an EigenVector.
|
|
static typename EigenVector::Type Flatten(FDTensor& tensor) { // NOLINT
|
|
return EigenVector::From(tensor, {tensor.Numel()});
|
|
}
|
|
|
|
static typename EigenVector::ConstType Flatten(
|
|
const FDTensor& tensor) { // NOLINT
|
|
return EigenVector::From(tensor, {tensor.Numel()});
|
|
}
|
|
};
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
struct EigenMatrix : public EigenTensor<T, 2, MajorType, IndexType> {
|
|
static typename EigenMatrix::Type Reshape(FDTensor& tensor, // NOLINT
|
|
int num_col_dims) {
|
|
int rank = tensor.shape.size();
|
|
FDASSERT((num_col_dims > 0 && num_col_dims < rank),
|
|
"Input dimension number(num_col_dims) must be between 0 and %d, "
|
|
"but received number is %d.",
|
|
rank, num_col_dims);
|
|
const int n = SizeToAxis(num_col_dims, tensor.shape);
|
|
const int d = SizeFromAxis(num_col_dims, tensor.shape);
|
|
return EigenMatrix::From(tensor, {n, d});
|
|
}
|
|
|
|
static typename EigenMatrix::ConstType Reshape(const FDTensor& tensor,
|
|
int num_col_dims) {
|
|
int rank = tensor.shape.size();
|
|
FDASSERT((num_col_dims > 0 && num_col_dims < rank),
|
|
"Input dimension number(num_col_dims) must be between 0 and %d, "
|
|
"but received number is %d.",
|
|
rank, num_col_dims);
|
|
const int n = SizeToAxis(num_col_dims, tensor.shape);
|
|
const int d = SizeFromAxis(num_col_dims, tensor.shape);
|
|
return EigenMatrix::From(tensor, {n, d});
|
|
}
|
|
};
|
|
|
|
class EigenDeviceWrapper {
|
|
public:
|
|
static std::shared_ptr<EigenDeviceWrapper> GetInstance();
|
|
const Eigen::DefaultDevice* GetDevice() const;
|
|
|
|
private:
|
|
Eigen::DefaultDevice device_;
|
|
static std::shared_ptr<EigenDeviceWrapper> instance_;
|
|
};
|
|
|
|
} // namespace function
|
|
} // namespace fastdeploy
|