mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 cb166053ba
			
		
	
	cb166053ba
	
	
	
		
			
			* fix test name * update * update * fix * fix * update * update * update * update * update * fix * update
		
			
				
	
	
		
			655 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			655 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | ||
| #
 | ||
| # Licensed under the Apache License, Version 2.0 (the "License");
 | ||
| # you may not use this file except in compliance with the License.
 | ||
| # You may obtain a copy of the License at
 | ||
| #
 | ||
| #     http://www.apache.org/licenses/LICENSE-2.0
 | ||
| #
 | ||
| # Unless required by applicable law or agreed to in writing, software
 | ||
| # distributed under the License is distributed on an "AS IS" BASIS,
 | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
| # See the License for the specific language governing permissions and
 | ||
| # limitations under the License.
 | ||
| 
 | ||
| import concurrent.futures
 | ||
| import json
 | ||
| import os
 | ||
| import re
 | ||
| import shutil
 | ||
| import signal
 | ||
| import socket
 | ||
| import subprocess
 | ||
| import sys
 | ||
| import time
 | ||
| 
 | ||
| import openai
 | ||
| import pytest
 | ||
| import requests
 | ||
| from jsonschema import validate
 | ||
| 
 | ||
| # Read ports from environment variables; use default values if not set
 | ||
| FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
 | ||
| FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
 | ||
| FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
 | ||
| 
 | ||
| # List of ports to clean before and after tests
 | ||
| PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
 | ||
| 
 | ||
| 
 | ||
| def is_port_open(host: str, port: int, timeout=1.0):
 | ||
|     """
 | ||
|     Check if a TCP port is open on the given host.
 | ||
|     Returns True if connection succeeds, False otherwise.
 | ||
|     """
 | ||
|     try:
 | ||
|         with socket.create_connection((host, port), timeout):
 | ||
|             return True
 | ||
|     except Exception:
 | ||
|         return False
 | ||
| 
 | ||
| 
 | ||
| def kill_process_on_port(port: int):
 | ||
|     """
 | ||
|     Kill processes that are listening on the given port.
 | ||
|     Uses `lsof` to find process ids and sends SIGKILL.
 | ||
|     """
 | ||
|     try:
 | ||
|         output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
 | ||
|         current_pid = os.getpid()
 | ||
|         parent_pid = os.getppid()
 | ||
|         for pid in output.splitlines():
 | ||
|             pid = int(pid)
 | ||
|             if pid in (current_pid, parent_pid):
 | ||
|                 print(f"Skip killing current process (pid={pid}) on port {port}")
 | ||
|                 continue
 | ||
|             os.kill(pid, signal.SIGKILL)
 | ||
|             print(f"Killed process on port {port}, pid={pid}")
 | ||
|     except subprocess.CalledProcessError:
 | ||
|         pass
 | ||
| 
 | ||
| 
 | ||
| def clean_ports():
 | ||
|     """
 | ||
|     Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
 | ||
|     """
 | ||
|     for port in PORTS_TO_CLEAN:
 | ||
|         kill_process_on_port(port)
 | ||
|     time.sleep(2)
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture(scope="session", autouse=True)
 | ||
| def setup_and_run_server():
 | ||
|     """
 | ||
|     Pytest fixture that runs once per test session:
 | ||
|     - Cleans ports before tests
 | ||
|     - Starts the API server as a subprocess
 | ||
|     - Waits for server port to open (up to 30 seconds)
 | ||
|     - Tears down server after all tests finish
 | ||
|     """
 | ||
|     print("Pre-test port cleanup...")
 | ||
|     clean_ports()
 | ||
| 
 | ||
|     print("log dir clean ")
 | ||
|     if os.path.exists("log") and os.path.isdir("log"):
 | ||
|         shutil.rmtree("log")
 | ||
| 
 | ||
|     base_path = os.getenv("MODEL_PATH")
 | ||
|     if base_path:
 | ||
|         model_path = os.path.join(base_path, "Qwen2-7B-Instruct")
 | ||
|     else:
 | ||
|         model_path = "./Qwen2-7B-Instruct"
 | ||
| 
 | ||
|     log_path = "server.log"
 | ||
|     cmd = [
 | ||
|         sys.executable,
 | ||
|         "-m",
 | ||
|         "fastdeploy.entrypoints.openai.api_server",
 | ||
|         "--model",
 | ||
|         model_path,
 | ||
|         "--port",
 | ||
|         str(FD_API_PORT),
 | ||
|         "--tensor-parallel-size",
 | ||
|         "1",
 | ||
|         "--engine-worker-queue-port",
 | ||
|         str(FD_ENGINE_QUEUE_PORT),
 | ||
|         "--metrics-port",
 | ||
|         str(FD_METRICS_PORT),
 | ||
|         "--max-model-len",
 | ||
|         "32768",
 | ||
|         "--max-num-seqs",
 | ||
|         "128",
 | ||
|         "--quantization",
 | ||
|         "wint8",
 | ||
|     ]
 | ||
| 
 | ||
|     # Start subprocess in new process group
 | ||
|     with open(log_path, "w") as logfile:
 | ||
|         process = subprocess.Popen(
 | ||
|             cmd,
 | ||
|             stdout=logfile,
 | ||
|             stderr=subprocess.STDOUT,
 | ||
|             start_new_session=True,  # Enables killing full group via os.killpg
 | ||
|         )
 | ||
| 
 | ||
|     # Wait up to 300 seconds for API server to be ready
 | ||
|     for _ in range(300):
 | ||
|         if is_port_open("127.0.0.1", FD_API_PORT):
 | ||
|             print(f"API server is up on port {FD_API_PORT}")
 | ||
|             break
 | ||
|         time.sleep(1)
 | ||
|     else:
 | ||
|         print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
 | ||
|         try:
 | ||
|             os.killpg(process.pid, signal.SIGTERM)
 | ||
|         except Exception as e:
 | ||
|             print(f"Failed to kill process group: {e}")
 | ||
|         raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
 | ||
| 
 | ||
|     yield  # Run tests
 | ||
| 
 | ||
|     print("\n===== Post-test server cleanup... =====")
 | ||
|     try:
 | ||
|         os.killpg(process.pid, signal.SIGTERM)
 | ||
|         clean_ports()
 | ||
|         print(f"API server (pid={process.pid}) terminated")
 | ||
|     except Exception as e:
 | ||
|         print(f"Failed to terminate API server: {e}")
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture(scope="session")
 | ||
| def api_url(request):
 | ||
|     """
 | ||
|     Returns the API endpoint URL for chat completions.
 | ||
|     """
 | ||
|     return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions"
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture(scope="session")
 | ||
| def metrics_url(request):
 | ||
|     """
 | ||
|     Returns the metrics endpoint URL.
 | ||
|     """
 | ||
|     return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics"
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture
 | ||
| def headers():
 | ||
|     """
 | ||
|     Returns common HTTP request headers.
 | ||
|     """
 | ||
|     return {"Content-Type": "application/json"}
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture
 | ||
| def consistent_payload():
 | ||
|     """
 | ||
|     Returns a fixed payload for consistency testing,
 | ||
|     including a fixed random seed and temperature.
 | ||
|     """
 | ||
|     return {
 | ||
|         "messages": [{"role": "user", "content": "用一句话介绍 PaddlePaddle"}],
 | ||
|         "temperature": 0.9,
 | ||
|         "top_p": 0,  # fix top_p to reduce randomness
 | ||
|         "seed": 13,  # fixed random seed
 | ||
|     }
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # JSON Schema for validating chat API responses
 | ||
| # ==========================
 | ||
| chat_response_schema = {
 | ||
|     "type": "object",
 | ||
|     "properties": {
 | ||
|         "id": {"type": "string"},
 | ||
|         "object": {"type": "string"},
 | ||
|         "created": {"type": "number"},
 | ||
|         "model": {"type": "string"},
 | ||
|         "choices": {
 | ||
|             "type": "array",
 | ||
|             "items": {
 | ||
|                 "type": "object",
 | ||
|                 "properties": {
 | ||
|                     "message": {
 | ||
|                         "type": "object",
 | ||
|                         "properties": {
 | ||
|                             "role": {"type": "string"},
 | ||
|                             "content": {"type": "string"},
 | ||
|                         },
 | ||
|                         "required": ["role", "content"],
 | ||
|                     },
 | ||
|                     "index": {"type": "number"},
 | ||
|                     "finish_reason": {"type": "string"},
 | ||
|                 },
 | ||
|                 "required": ["message", "index", "finish_reason"],
 | ||
|             },
 | ||
|         },
 | ||
|     },
 | ||
|     "required": ["id", "object", "created", "model", "choices"],
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # Helper function to calculate difference rate between two texts
 | ||
| # ==========================
 | ||
| def calculate_diff_rate(text1, text2):
 | ||
|     """
 | ||
|     Calculate the difference rate between two strings
 | ||
|     based on the normalized Levenshtein edit distance.
 | ||
|     Returns a float in [0,1], where 0 means identical.
 | ||
|     """
 | ||
|     if text1 == text2:
 | ||
|         return 0.0
 | ||
| 
 | ||
|     len1, len2 = len(text1), len(text2)
 | ||
|     dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
 | ||
| 
 | ||
|     for i in range(len1 + 1):
 | ||
|         for j in range(len2 + 1):
 | ||
|             if i == 0 or j == 0:
 | ||
|                 dp[i][j] = i + j
 | ||
|             elif text1[i - 1] == text2[j - 1]:
 | ||
|                 dp[i][j] = dp[i - 1][j - 1]
 | ||
|             else:
 | ||
|                 dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
 | ||
| 
 | ||
|     edit_distance = dp[len1][len2]
 | ||
|     max_len = max(len1, len2)
 | ||
|     return edit_distance / max_len if max_len > 0 else 0.0
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # Valid prompt test cases for parameterized testing
 | ||
| # ==========================
 | ||
| valid_prompts = [
 | ||
|     [{"role": "user", "content": "你好"}],
 | ||
|     [{"role": "user", "content": "用一句话介绍 FastDeploy"}],
 | ||
| ]
 | ||
| 
 | ||
| 
 | ||
| @pytest.mark.parametrize("messages", valid_prompts)
 | ||
| def test_valid_chat(messages, api_url, headers):
 | ||
|     """
 | ||
|     Test valid chat requests.
 | ||
|     """
 | ||
|     resp = requests.post(api_url, headers=headers, json={"messages": messages})
 | ||
| 
 | ||
|     assert resp.status_code == 200
 | ||
|     validate(instance=resp.json(), schema=chat_response_schema)
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # Consistency test for repeated runs with fixed payload
 | ||
| # ==========================
 | ||
| def test_consistency_between_runs(api_url, headers, consistent_payload):
 | ||
|     """
 | ||
|     Test that two runs with the same fixed input produce similar outputs.
 | ||
|     """
 | ||
|     # First request
 | ||
|     resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
 | ||
|     assert resp1.status_code == 200
 | ||
|     result1 = resp1.json()
 | ||
|     content1 = result1["choices"][0]["message"]["content"]
 | ||
| 
 | ||
|     # Second request
 | ||
|     resp2 = requests.post(api_url, headers=headers, json=consistent_payload)
 | ||
|     assert resp2.status_code == 200
 | ||
|     result2 = resp2.json()
 | ||
|     content2 = result2["choices"][0]["message"]["content"]
 | ||
| 
 | ||
|     # Calculate difference rate
 | ||
|     diff_rate = calculate_diff_rate(content1, content2)
 | ||
| 
 | ||
|     # Verify that the difference rate is below the threshold
 | ||
|     assert diff_rate < 0.05, f"Output difference too large ({diff_rate:.4%})"
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # Invalid prompt tests
 | ||
| # ==========================
 | ||
| 
 | ||
| invalid_prompts = [
 | ||
|     [],  # Empty array
 | ||
|     [{}],  # Empty object
 | ||
|     [{"role": "user"}],  # Missing content
 | ||
|     [{"content": "hello"}],  # Missing role
 | ||
| ]
 | ||
| 
 | ||
| 
 | ||
| @pytest.mark.parametrize("messages", invalid_prompts)
 | ||
| def test_invalid_chat(messages, api_url, headers):
 | ||
|     """
 | ||
|     Test invalid chat inputs
 | ||
|     """
 | ||
|     resp = requests.post(api_url, headers=headers, json={"messages": messages})
 | ||
|     assert resp.status_code >= 400, "Invalid request should return an error status code"
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # Test for input exceeding context length
 | ||
| # ==========================
 | ||
| 
 | ||
| 
 | ||
| def test_exceed_context_length(api_url, headers):
 | ||
|     """
 | ||
|     Test case for inputs that exceed the model's maximum context length.
 | ||
|     """
 | ||
|     # Construct an overly long message
 | ||
|     long_content = "你好," * 20000
 | ||
| 
 | ||
|     messages = [{"role": "user", "content": long_content}]
 | ||
| 
 | ||
|     resp = requests.post(api_url, headers=headers, json={"messages": messages})
 | ||
| 
 | ||
|     # Check if the response indicates a token limit error or server error (500)
 | ||
|     try:
 | ||
|         response_json = resp.json()
 | ||
|     except Exception:
 | ||
|         response_json = {}
 | ||
| 
 | ||
|     # Check status code and response content
 | ||
|     assert (
 | ||
|         resp.status_code != 200 or "token" in json.dumps(response_json).lower()
 | ||
|     ), f"Expected token limit error or similar, but got a normal response: {response_json}"
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # Multi-turn Conversation Test
 | ||
| # ==========================
 | ||
| def test_multi_turn_conversation(api_url, headers):
 | ||
|     """
 | ||
|     Test whether multi-turn conversation context is effective.
 | ||
|     """
 | ||
|     messages = [
 | ||
|         {"role": "user", "content": "你是谁?"},
 | ||
|         {"role": "assistant", "content": "我是AI助手"},
 | ||
|         {"role": "user", "content": "你能做什么?"},
 | ||
|     ]
 | ||
|     resp = requests.post(api_url, headers=headers, json={"messages": messages})
 | ||
|     assert resp.status_code == 200
 | ||
|     validate(instance=resp.json(), schema=chat_response_schema)
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # Concurrent Performance Test
 | ||
| # ==========================
 | ||
| def test_concurrent_perf(api_url, headers):
 | ||
|     """
 | ||
|     Send concurrent requests to test stability and response time.
 | ||
|     """
 | ||
|     prompts = [{"role": "user", "content": "Introduce FastDeploy."}]
 | ||
| 
 | ||
|     def send_request():
 | ||
|         """
 | ||
|         Send a single request
 | ||
|         """
 | ||
|         resp = requests.post(api_url, headers=headers, json={"messages": prompts})
 | ||
|         assert resp.status_code == 200
 | ||
|         return resp.elapsed.total_seconds()
 | ||
| 
 | ||
|     with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
 | ||
|         futures = [executor.submit(send_request) for _ in range(8)]
 | ||
|         durations = [f.result() for f in futures]
 | ||
| 
 | ||
|     print("\nResponse time for each request:", durations)
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # Metrics Endpoint Test
 | ||
| # ==========================
 | ||
| 
 | ||
| 
 | ||
| def test_metrics_endpoint(metrics_url):
 | ||
|     """
 | ||
|     Test the metrics monitoring endpoint.
 | ||
|     """
 | ||
|     resp = requests.get(metrics_url, timeout=5)
 | ||
| 
 | ||
|     assert resp.status_code == 200, f"Unexpected status code: {resp.status_code}"
 | ||
|     assert "text/plain" in resp.headers["Content-Type"], "Content-Type is not text/plain"
 | ||
| 
 | ||
|     # Parse Prometheus metrics data
 | ||
|     metrics_data = resp.text
 | ||
|     lines = metrics_data.split("\n")
 | ||
| 
 | ||
|     metric_lines = [line for line in lines if not line.startswith("#") and line.strip() != ""]
 | ||
| 
 | ||
|     # 断言 具体值
 | ||
|     num_requests_running_found = False
 | ||
|     num_requests_waiting_found = False
 | ||
|     time_to_first_token_seconds_sum_found = False
 | ||
|     time_per_output_token_seconds_sum_found = False
 | ||
|     e2e_request_latency_seconds_sum_found = False
 | ||
|     request_inference_time_seconds_sum_found = False
 | ||
|     request_queue_time_seconds_sum_found = False
 | ||
|     request_prefill_time_seconds_sum_found = False
 | ||
|     request_decode_time_seconds_sum_found = False
 | ||
|     prompt_tokens_total_found = False
 | ||
|     generation_tokens_total_found = False
 | ||
|     request_prompt_tokens_sum_found = False
 | ||
|     request_generation_tokens_sum_found = False
 | ||
|     gpu_cache_usage_perc_found = False
 | ||
|     request_params_max_tokens_sum_found = False
 | ||
|     request_success_total_found = False
 | ||
| 
 | ||
|     for line in metric_lines:
 | ||
|         if line.startswith("fastdeploy:num_requests_running"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "num_requests_running 值错误"
 | ||
|             num_requests_running_found = True
 | ||
|         elif line.startswith("fastdeploy:num_requests_waiting"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             num_requests_waiting_found = True
 | ||
|             assert float(value) >= 0, "num_requests_waiting 值错误"
 | ||
|         elif line.startswith("fastdeploy:time_to_first_token_seconds_sum"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "time_to_first_token_seconds_sum 值错误"
 | ||
|             time_to_first_token_seconds_sum_found = True
 | ||
|         elif line.startswith("fastdeploy:time_per_output_token_seconds_sum"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "time_per_output_token_seconds_sum 值错误"
 | ||
|             time_per_output_token_seconds_sum_found = True
 | ||
|         elif line.startswith("fastdeploy:e2e_request_latency_seconds_sum"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "e2e_request_latency_seconds_sum_found 值错误"
 | ||
|             e2e_request_latency_seconds_sum_found = True
 | ||
|         elif line.startswith("fastdeploy:request_inference_time_seconds_sum"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "request_inference_time_seconds_sum 值错误"
 | ||
|             request_inference_time_seconds_sum_found = True
 | ||
|         elif line.startswith("fastdeploy:request_queue_time_seconds_sum"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "request_queue_time_seconds_sum 值错误"
 | ||
|             request_queue_time_seconds_sum_found = True
 | ||
|         elif line.startswith("fastdeploy:request_prefill_time_seconds_sum"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "request_prefill_time_seconds_sum 值错误"
 | ||
|             request_prefill_time_seconds_sum_found = True
 | ||
|         elif line.startswith("fastdeploy:request_decode_time_seconds_sum"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "request_decode_time_seconds_sum 值错误"
 | ||
|             request_decode_time_seconds_sum_found = True
 | ||
|         elif line.startswith("fastdeploy:prompt_tokens_total"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "prompt_tokens_total 值错误"
 | ||
|             prompt_tokens_total_found = True
 | ||
|         elif line.startswith("fastdeploy:generation_tokens_total"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "generation_tokens_total 值错误"
 | ||
|             generation_tokens_total_found = True
 | ||
|         elif line.startswith("fastdeploy:request_prompt_tokens_sum"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "request_prompt_tokens_sum 值错误"
 | ||
|             request_prompt_tokens_sum_found = True
 | ||
|         elif line.startswith("fastdeploy:request_generation_tokens_sum"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "request_generation_tokens_sum 值错误"
 | ||
|             request_generation_tokens_sum_found = True
 | ||
|         elif line.startswith("fastdeploy:gpu_cache_usage_perc"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "gpu_cache_usage_perc 值错误"
 | ||
|             gpu_cache_usage_perc_found = True
 | ||
|         elif line.startswith("fastdeploy:request_params_max_tokens_sum"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "request_params_max_tokens_sum 值错误"
 | ||
|             request_params_max_tokens_sum_found = True
 | ||
|         elif line.startswith("fastdeploy:request_success_total"):
 | ||
|             _, value = line.rsplit(" ", 1)
 | ||
|             assert float(value) >= 0, "request_success_total 值错误"
 | ||
|             request_success_total_found = True
 | ||
| 
 | ||
|     assert num_requests_running_found, "缺少 fastdeploy:num_requests_running 指标"
 | ||
|     assert num_requests_waiting_found, "缺少 fastdeploy:num_requests_waiting 指标"
 | ||
|     assert time_to_first_token_seconds_sum_found, "缺少 fastdeploy:time_to_first_token_seconds_sum 指标"
 | ||
|     assert time_per_output_token_seconds_sum_found, "缺少 fastdeploy:time_per_output_token_seconds_sum 指标"
 | ||
|     assert e2e_request_latency_seconds_sum_found, "缺少 fastdeploy:e2e_request_latency_seconds_sum_found 指标"
 | ||
|     assert request_inference_time_seconds_sum_found, "缺少 fastdeploy:request_inference_time_seconds_sum 指标"
 | ||
|     assert request_queue_time_seconds_sum_found, "缺少 fastdeploy:request_queue_time_seconds_sum 指标"
 | ||
|     assert request_prefill_time_seconds_sum_found, "缺少 fastdeploy:request_prefill_time_seconds_sum 指标"
 | ||
|     assert request_decode_time_seconds_sum_found, "缺少 fastdeploy:request_decode_time_seconds_sum 指标"
 | ||
|     assert prompt_tokens_total_found, "缺少 fastdeploy:prompt_tokens_total 指标"
 | ||
|     assert generation_tokens_total_found, "缺少 fastdeploy:generation_tokens_total 指标"
 | ||
|     assert request_prompt_tokens_sum_found, "缺少 fastdeploy:request_prompt_tokens_sum 指标"
 | ||
|     assert request_generation_tokens_sum_found, "缺少 fastdeploy:request_generation_tokens_sum 指标"
 | ||
|     assert gpu_cache_usage_perc_found, "缺少 fastdeploy:gpu_cache_usage_perc 指标"
 | ||
|     assert request_params_max_tokens_sum_found, "缺少 fastdeploy:request_params_max_tokens_sum 指标"
 | ||
|     assert request_success_total_found, "缺少 fastdeploy:request_success_total 指标"
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # OpenAI Client chat.completions Test
 | ||
| # ==========================
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture
 | ||
| def openai_client():
 | ||
|     ip = "0.0.0.0"
 | ||
|     service_http_port = str(FD_API_PORT)
 | ||
|     client = openai.Client(
 | ||
|         base_url=f"http://{ip}:{service_http_port}/v1",
 | ||
|         api_key="EMPTY_API_KEY",
 | ||
|     )
 | ||
|     return client
 | ||
| 
 | ||
| 
 | ||
| # Non-streaming test
 | ||
| def test_non_streaming_chat(openai_client):
 | ||
|     """Test non-streaming chat functionality with the local service"""
 | ||
|     response = openai_client.chat.completions.create(
 | ||
|         model="default",
 | ||
|         messages=[
 | ||
|             {"role": "system", "content": "You are a helpful AI assistant."},
 | ||
|             {"role": "user", "content": "List 3 countries and their capitals."},
 | ||
|         ],
 | ||
|         temperature=1,
 | ||
|         max_tokens=1024,
 | ||
|         stream=False,
 | ||
|     )
 | ||
| 
 | ||
|     assert hasattr(response, "choices")
 | ||
|     assert len(response.choices) > 0
 | ||
|     assert hasattr(response.choices[0], "message")
 | ||
|     assert hasattr(response.choices[0].message, "content")
 | ||
| 
 | ||
| 
 | ||
| # Streaming test
 | ||
| def test_streaming_chat(openai_client, capsys):
 | ||
|     """Test streaming chat functionality with the local service"""
 | ||
|     response = openai_client.chat.completions.create(
 | ||
|         model="default",
 | ||
|         messages=[
 | ||
|             {"role": "system", "content": "You are a helpful AI assistant."},
 | ||
|             {"role": "user", "content": "List 3 countries and their capitals."},
 | ||
|             {
 | ||
|                 "role": "assistant",
 | ||
|                 "content": "China(Beijing), France(Paris), Australia(Canberra).",
 | ||
|             },
 | ||
|             {"role": "user", "content": "OK, tell more."},
 | ||
|         ],
 | ||
|         temperature=1,
 | ||
|         max_tokens=1024,
 | ||
|         stream=True,
 | ||
|     )
 | ||
| 
 | ||
|     output = []
 | ||
|     for chunk in response:
 | ||
|         if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
 | ||
|             output.append(chunk.choices[0].delta.content)
 | ||
|     assert len(output) > 2
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # OpenAI Client completions Test
 | ||
| # ==========================
 | ||
| 
 | ||
| 
 | ||
| def test_non_streaming(openai_client):
 | ||
|     """Test non-streaming chat functionality with the local service"""
 | ||
|     response = openai_client.completions.create(
 | ||
|         model="default",
 | ||
|         prompt="Hello, how are you?",
 | ||
|         temperature=1,
 | ||
|         max_tokens=1024,
 | ||
|         stream=False,
 | ||
|     )
 | ||
| 
 | ||
|     # Assertions to check the response structure
 | ||
|     assert hasattr(response, "choices")
 | ||
|     assert len(response.choices) > 0
 | ||
| 
 | ||
| 
 | ||
| def test_streaming(openai_client, capsys):
 | ||
|     """Test streaming functionality with the local service"""
 | ||
|     response = openai_client.completions.create(
 | ||
|         model="default",
 | ||
|         prompt="Hello, how are you?",
 | ||
|         temperature=1,
 | ||
|         max_tokens=1024,
 | ||
|         stream=True,
 | ||
|     )
 | ||
| 
 | ||
|     # Collect streaming output
 | ||
|     output = []
 | ||
|     for chunk in response:
 | ||
|         output.append(chunk.choices[0].text)
 | ||
|     assert len(output) > 0
 | ||
| 
 | ||
| 
 | ||
| def test_profile_reset_block_num():
 | ||
|     """测试profile reset_block_num功能,与baseline diff不能超过5%"""
 | ||
|     log_file = "./log/config.log"
 | ||
|     baseline = 32562
 | ||
| 
 | ||
|     if not os.path.exists(log_file):
 | ||
|         pytest.fail(f"Log file not found: {log_file}")
 | ||
| 
 | ||
|     with open(log_file, "r") as f:
 | ||
|         log_lines = f.readlines()
 | ||
| 
 | ||
|     target_line = None
 | ||
|     for line in log_lines:
 | ||
|         if "Reset block num" in line:
 | ||
|             target_line = line.strip()
 | ||
|             break
 | ||
| 
 | ||
|     if target_line is None:
 | ||
|         pytest.fail("日志中没有Reset block num信息")
 | ||
| 
 | ||
|     match = re.search(r"total_block_num:(\d+)", target_line)
 | ||
|     if not match:
 | ||
|         pytest.fail(f"Failed to extract total_block_num from line: {target_line}")
 | ||
| 
 | ||
|     try:
 | ||
|         actual_value = int(match.group(1))
 | ||
|     except ValueError:
 | ||
|         pytest.fail(f"Invalid number format: {match.group(1)}")
 | ||
| 
 | ||
|     lower_bound = baseline * (1 - 0.05)
 | ||
|     upper_bound = baseline * (1 + 0.05)
 | ||
|     print(f"Reset total_block_num: {actual_value}. baseline: {baseline}")
 | ||
| 
 | ||
|     assert lower_bound <= actual_value <= upper_bound, (
 | ||
|         f"Reset total_block_num {actual_value} 与 baseline {baseline} diff需要在5%以内"
 | ||
|         f"Allowed range: [{lower_bound:.1f}, {upper_bound:.1f}]"
 | ||
|     )
 |