mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 cb166053ba
			
		
	
	cb166053ba
	
	
	
		
			
			* fix test name * update * update * fix * fix * update * update * update * update * update * fix * update
		
			
				
	
	
		
			592 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			592 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | ||
| #
 | ||
| # Licensed under the Apache License, Version 2.0 (the "License");
 | ||
| # you may not use this file except in compliance with the License.
 | ||
| # You may obtain a copy of the License at
 | ||
| #
 | ||
| #     http://www.apache.org/licenses/LICENSE-2.0
 | ||
| #
 | ||
| # Unless required by applicable law or agreed to in writing, software
 | ||
| # distributed under the License is distributed on an "AS IS" BASIS,
 | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
| # See the License for the specific language governing permissions and
 | ||
| # limitations under the License.
 | ||
| 
 | ||
| import json
 | ||
| import os
 | ||
| import re
 | ||
| import shutil
 | ||
| import signal
 | ||
| import socket
 | ||
| import subprocess
 | ||
| import sys
 | ||
| import time
 | ||
| 
 | ||
| import openai
 | ||
| import pytest
 | ||
| import requests
 | ||
| 
 | ||
| # Read ports from environment variables; use default values if not set
 | ||
| FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
 | ||
| FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
 | ||
| FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
 | ||
| 
 | ||
| # List of ports to clean before and after tests
 | ||
| PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
 | ||
| 
 | ||
| 
 | ||
| def is_port_open(host: str, port: int, timeout=1.0):
 | ||
|     """
 | ||
|     Check if a TCP port is open on the given host.
 | ||
|     Returns True if connection succeeds, False otherwise.
 | ||
|     """
 | ||
|     try:
 | ||
|         with socket.create_connection((host, port), timeout):
 | ||
|             return True
 | ||
|     except Exception:
 | ||
|         return False
 | ||
| 
 | ||
| 
 | ||
| def kill_process_on_port(port: int):
 | ||
|     """
 | ||
|     Kill processes that are listening on the given port.
 | ||
|     Uses `lsof` to find process ids and sends SIGKILL.
 | ||
|     """
 | ||
|     try:
 | ||
|         output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
 | ||
|         current_pid = os.getpid()
 | ||
|         parent_pid = os.getppid()
 | ||
|         for pid in output.splitlines():
 | ||
|             pid = int(pid)
 | ||
|             if pid in (current_pid, parent_pid):
 | ||
|                 print(f"Skip killing current process (pid={pid}) on port {port}")
 | ||
|                 continue
 | ||
|             os.kill(pid, signal.SIGKILL)
 | ||
|             print(f"Killed process on port {port}, pid={pid}")
 | ||
|     except subprocess.CalledProcessError:
 | ||
|         pass
 | ||
| 
 | ||
| 
 | ||
| def clean_ports():
 | ||
|     """
 | ||
|     Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
 | ||
|     """
 | ||
|     for port in PORTS_TO_CLEAN:
 | ||
|         kill_process_on_port(port)
 | ||
|     time.sleep(2)
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture(scope="session", autouse=True)
 | ||
| def setup_and_run_server():
 | ||
|     """
 | ||
|     Pytest fixture that runs once per test session:
 | ||
|     - Cleans ports before tests
 | ||
|     - Starts the API server as a subprocess
 | ||
|     - Waits for server port to open (up to 30 seconds)
 | ||
|     - Tears down server after all tests finish
 | ||
|     """
 | ||
|     print("Pre-test port cleanup...")
 | ||
|     clean_ports()
 | ||
|     print("log dir clean ")
 | ||
|     if os.path.exists("log") and os.path.isdir("log"):
 | ||
|         shutil.rmtree("log")
 | ||
| 
 | ||
|     base_path = os.getenv("MODEL_PATH")
 | ||
|     if base_path:
 | ||
|         model_path = os.path.join(base_path, "ernie-4_5-vl-28b-a3b-bf16-paddle")
 | ||
|     else:
 | ||
|         model_path = "./ernie-4_5-vl-28b-a3b-bf16-paddle"
 | ||
| 
 | ||
|     log_path = "server.log"
 | ||
|     limit_mm_str = json.dumps({"image": 100, "video": 100})
 | ||
| 
 | ||
|     cmd = [
 | ||
|         sys.executable,
 | ||
|         "-m",
 | ||
|         "fastdeploy.entrypoints.openai.api_server",
 | ||
|         "--model",
 | ||
|         model_path,
 | ||
|         "--port",
 | ||
|         str(FD_API_PORT),
 | ||
|         "--tensor-parallel-size",
 | ||
|         "2",
 | ||
|         "--engine-worker-queue-port",
 | ||
|         str(FD_ENGINE_QUEUE_PORT),
 | ||
|         "--metrics-port",
 | ||
|         str(FD_METRICS_PORT),
 | ||
|         "--enable-mm",
 | ||
|         "--max-model-len",
 | ||
|         "32768",
 | ||
|         "--max-num-batched-tokens",
 | ||
|         "384",
 | ||
|         "--max-num-seqs",
 | ||
|         "128",
 | ||
|         "--limit-mm-per-prompt",
 | ||
|         limit_mm_str,
 | ||
|         "--enable-chunked-prefill",
 | ||
|         "--kv-cache-ratio",
 | ||
|         "0.71",
 | ||
|         "--quantization",
 | ||
|         "wint4",
 | ||
|         "--reasoning-parser",
 | ||
|         "ernie-45-vl",
 | ||
|     ]
 | ||
| 
 | ||
|     # Start subprocess in new process group
 | ||
|     with open(log_path, "w") as logfile:
 | ||
|         process = subprocess.Popen(
 | ||
|             cmd,
 | ||
|             stdout=logfile,
 | ||
|             stderr=subprocess.STDOUT,
 | ||
|             start_new_session=True,  # Enables killing full group via os.killpg
 | ||
|         )
 | ||
| 
 | ||
|     # Wait up to 10 minutes for API server to be ready
 | ||
|     for _ in range(10 * 60):
 | ||
|         if is_port_open("127.0.0.1", FD_API_PORT):
 | ||
|             print(f"API server is up on port {FD_API_PORT}")
 | ||
|             break
 | ||
|         time.sleep(1)
 | ||
|     else:
 | ||
|         print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
 | ||
|         try:
 | ||
|             os.killpg(process.pid, signal.SIGTERM)
 | ||
|         except Exception as e:
 | ||
|             print(f"Failed to kill process group: {e}")
 | ||
|         raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
 | ||
| 
 | ||
|     yield  # Run tests
 | ||
| 
 | ||
|     print("\n===== Post-test server cleanup... =====")
 | ||
|     try:
 | ||
|         os.killpg(process.pid, signal.SIGTERM)
 | ||
|         print(f"API server (pid={process.pid}) terminated")
 | ||
|         clean_ports()
 | ||
|     except Exception as e:
 | ||
|         print(f"Failed to terminate API server: {e}")
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture(scope="session")
 | ||
| def api_url(request):
 | ||
|     """
 | ||
|     Returns the API endpoint URL for chat completions.
 | ||
|     """
 | ||
|     return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions"
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture(scope="session")
 | ||
| def metrics_url(request):
 | ||
|     """
 | ||
|     Returns the metrics endpoint URL.
 | ||
|     """
 | ||
|     return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics"
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture
 | ||
| def headers():
 | ||
|     """
 | ||
|     Returns common HTTP request headers.
 | ||
|     """
 | ||
|     return {"Content-Type": "application/json"}
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture
 | ||
| def consistent_payload():
 | ||
|     """
 | ||
|     Returns a fixed payload for consistency testing,
 | ||
|     including a fixed random seed and temperature.
 | ||
|     """
 | ||
|     return {
 | ||
|         "messages": [
 | ||
|             {
 | ||
|                 "role": "user",
 | ||
|                 "content": [
 | ||
|                     {
 | ||
|                         "type": "image_url",
 | ||
|                         "image_url": {
 | ||
|                             "url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0",
 | ||
|                             "detail": "high",
 | ||
|                         },
 | ||
|                     },
 | ||
|                     {"type": "text", "text": "请描述图片内容"},
 | ||
|                 ],
 | ||
|             }
 | ||
|         ],
 | ||
|         "temperature": 0.8,
 | ||
|         "top_p": 0,  # fix top_p to reduce randomness
 | ||
|         "seed": 13,  # fixed random seed
 | ||
|     }
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # Consistency test for repeated runs with fixed payload
 | ||
| # ==========================
 | ||
| def test_consistency_between_runs(api_url, headers, consistent_payload):
 | ||
|     """
 | ||
|     Test that result is same as the base result.
 | ||
|     """
 | ||
|     # request
 | ||
|     resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
 | ||
|     assert resp1.status_code == 200
 | ||
|     result1 = resp1.json()
 | ||
|     content1 = (
 | ||
|         result1["choices"][0]["message"]["reasoning_content"]
 | ||
|         + "</think>"
 | ||
|         + result1["choices"][0]["message"]["content"]
 | ||
|     )
 | ||
|     file_res_temp = "ernie-4_5-vl"
 | ||
|     f_o = open(file_res_temp, "a")
 | ||
|     f_o.writelines(content1)
 | ||
|     f_o.close()
 | ||
| 
 | ||
|     # base result
 | ||
|     base_path = os.getenv("MODEL_PATH")
 | ||
|     if base_path:
 | ||
|         base_file = os.path.join(base_path, "ernie-4_5-vl-base-tp2")
 | ||
|     else:
 | ||
|         base_file = "ernie-4_5-vl-base-tp2"
 | ||
|     with open(base_file, "r") as f:
 | ||
|         content2 = f.read()
 | ||
| 
 | ||
|     # Verify that result is same as the base result
 | ||
|     assert content1 == content2
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # OpenAI Client Chat Completion Test
 | ||
| # ==========================
 | ||
| 
 | ||
| 
 | ||
| @pytest.fixture
 | ||
| def openai_client():
 | ||
|     ip = "0.0.0.0"
 | ||
|     service_http_port = str(FD_API_PORT)
 | ||
|     client = openai.Client(
 | ||
|         base_url=f"http://{ip}:{service_http_port}/v1",
 | ||
|         api_key="EMPTY_API_KEY",
 | ||
|     )
 | ||
|     return client
 | ||
| 
 | ||
| 
 | ||
| # Non-streaming test
 | ||
| def test_non_streaming_chat(openai_client):
 | ||
|     """Test non-streaming chat functionality with the local service"""
 | ||
|     response = openai_client.chat.completions.create(
 | ||
|         model="default",
 | ||
|         messages=[
 | ||
|             {
 | ||
|                 "role": "system",
 | ||
|                 "content": "You are a helpful AI assistant.",
 | ||
|             },  # system不是必需,可选
 | ||
|             {
 | ||
|                 "role": "user",
 | ||
|                 "content": [
 | ||
|                     {
 | ||
|                         "type": "image_url",
 | ||
|                         "image_url": {
 | ||
|                             "url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0",
 | ||
|                             "detail": "high",
 | ||
|                         },
 | ||
|                     },
 | ||
|                     {"type": "text", "text": "请描述图片内容"},
 | ||
|                 ],
 | ||
|             },
 | ||
|         ],
 | ||
|         temperature=1,
 | ||
|         max_tokens=53,
 | ||
|         stream=False,
 | ||
|     )
 | ||
| 
 | ||
|     assert hasattr(response, "choices")
 | ||
|     assert len(response.choices) > 0
 | ||
|     assert hasattr(response.choices[0], "message")
 | ||
|     assert hasattr(response.choices[0].message, "content")
 | ||
| 
 | ||
| 
 | ||
| # Streaming test
 | ||
| def test_streaming_chat(openai_client, capsys):
 | ||
|     """Test streaming chat functionality with the local service"""
 | ||
|     response = openai_client.chat.completions.create(
 | ||
|         model="default",
 | ||
|         messages=[
 | ||
|             {
 | ||
|                 "role": "system",
 | ||
|                 "content": "You are a helpful AI assistant.",
 | ||
|             },  # system不是必需,可选
 | ||
|             {"role": "user", "content": "List 3 countries and their capitals."},
 | ||
|             {
 | ||
|                 "role": "assistant",
 | ||
|                 "content": "China(Beijing), France(Paris), Australia(Canberra).",
 | ||
|             },
 | ||
|             {
 | ||
|                 "role": "user",
 | ||
|                 "content": [
 | ||
|                     {
 | ||
|                         "type": "image_url",
 | ||
|                         "image_url": {
 | ||
|                             "url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0",
 | ||
|                             "detail": "high",
 | ||
|                         },
 | ||
|                     },
 | ||
|                     {"type": "text", "text": "请描述图片内容"},
 | ||
|                 ],
 | ||
|             },
 | ||
|         ],
 | ||
|         temperature=1,
 | ||
|         max_tokens=512,
 | ||
|         stream=True,
 | ||
|     )
 | ||
| 
 | ||
|     output = []
 | ||
|     for chunk in response:
 | ||
|         if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
 | ||
|             output.append(chunk.choices[0].delta.content)
 | ||
|     assert len(output) > 2
 | ||
| 
 | ||
| 
 | ||
| # ==========================
 | ||
| # OpenAI Client additional chat/completions test
 | ||
| # ==========================
 | ||
| 
 | ||
| 
 | ||
| def test_non_streaming_chat_with_return_token_ids(openai_client, capsys):
 | ||
|     """
 | ||
|     Test return_token_ids option in non-streaming chat functionality with the local service
 | ||
|     """
 | ||
|     # 设定 return_token_ids
 | ||
|     response = openai_client.chat.completions.create(
 | ||
|         model="default",
 | ||
|         messages=[
 | ||
|             {"role": "system", "content": "You are a helpful AI assistant."},  # system不是必需,可选
 | ||
|             {
 | ||
|                 "role": "user",
 | ||
|                 "content": [
 | ||
|                     {
 | ||
|                         "type": "image_url",
 | ||
|                         "image_url": {
 | ||
|                             "url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
 | ||
|                             "detail": "high",
 | ||
|                         },
 | ||
|                     },
 | ||
|                     {"type": "text", "text": "请描述图片内容"},
 | ||
|                 ],
 | ||
|             },
 | ||
|         ],
 | ||
|         temperature=1,
 | ||
|         max_tokens=53,
 | ||
|         extra_body={"return_token_ids": True},
 | ||
|         stream=False,
 | ||
|     )
 | ||
|     assert hasattr(response, "choices")
 | ||
|     assert len(response.choices) > 0
 | ||
|     assert hasattr(response.choices[0], "message")
 | ||
|     assert hasattr(response.choices[0].message, "prompt_token_ids")
 | ||
|     assert isinstance(response.choices[0].message.prompt_token_ids, list)
 | ||
|     assert hasattr(response.choices[0].message, "completion_token_ids")
 | ||
|     assert isinstance(response.choices[0].message.completion_token_ids, list)
 | ||
| 
 | ||
|     # 不设定 return_token_ids
 | ||
|     response = openai_client.chat.completions.create(
 | ||
|         model="default",
 | ||
|         messages=[
 | ||
|             {"role": "system", "content": "You are a helpful AI assistant."},  # system不是必需,可选
 | ||
|             {
 | ||
|                 "role": "user",
 | ||
|                 "content": [
 | ||
|                     {
 | ||
|                         "type": "image_url",
 | ||
|                         "image_url": {
 | ||
|                             "url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
 | ||
|                             "detail": "high",
 | ||
|                         },
 | ||
|                     },
 | ||
|                     {"type": "text", "text": "请描述图片内容"},
 | ||
|                 ],
 | ||
|             },
 | ||
|         ],
 | ||
|         temperature=1,
 | ||
|         max_tokens=53,
 | ||
|         extra_body={"return_token_ids": False},
 | ||
|         stream=False,
 | ||
|     )
 | ||
|     assert hasattr(response, "choices")
 | ||
|     assert len(response.choices) > 0
 | ||
|     assert hasattr(response.choices[0], "message")
 | ||
|     assert hasattr(response.choices[0].message, "prompt_token_ids")
 | ||
|     assert response.choices[0].message.prompt_token_ids is None
 | ||
|     assert hasattr(response.choices[0].message, "completion_token_ids")
 | ||
|     assert response.choices[0].message.completion_token_ids is None
 | ||
| 
 | ||
| 
 | ||
| def test_streaming_chat_with_return_token_ids(openai_client, capsys):
 | ||
|     """
 | ||
|     Test return_token_ids option in streaming chat functionality with the local service
 | ||
|     """
 | ||
|     # enable return_token_ids
 | ||
|     response = openai_client.chat.completions.create(
 | ||
|         model="default",
 | ||
|         messages=[
 | ||
|             {"role": "system", "content": "You are a helpful AI assistant."},  # system不是必需,可选
 | ||
|             {
 | ||
|                 "role": "user",
 | ||
|                 "content": [
 | ||
|                     {
 | ||
|                         "type": "image_url",
 | ||
|                         "image_url": {
 | ||
|                             "url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
 | ||
|                             "detail": "high",
 | ||
|                         },
 | ||
|                     },
 | ||
|                     {"type": "text", "text": "请描述图片内容"},
 | ||
|                 ],
 | ||
|             },
 | ||
|         ],
 | ||
|         temperature=1,
 | ||
|         max_tokens=53,
 | ||
|         extra_body={"return_token_ids": True},
 | ||
|         stream=True,
 | ||
|     )
 | ||
|     is_first_chunk = True
 | ||
|     for chunk in response:
 | ||
|         assert hasattr(chunk, "choices")
 | ||
|         assert len(chunk.choices) > 0
 | ||
|         assert hasattr(chunk.choices[0], "delta")
 | ||
|         assert hasattr(chunk.choices[0].delta, "prompt_token_ids")
 | ||
|         assert hasattr(chunk.choices[0].delta, "completion_token_ids")
 | ||
|         if is_first_chunk:
 | ||
|             is_first_chunk = False
 | ||
|             assert isinstance(chunk.choices[0].delta.prompt_token_ids, list)
 | ||
|             assert chunk.choices[0].delta.completion_token_ids is None
 | ||
|         else:
 | ||
|             assert chunk.choices[0].delta.prompt_token_ids is None
 | ||
|             assert isinstance(chunk.choices[0].delta.completion_token_ids, list)
 | ||
| 
 | ||
|     # disable return_token_ids
 | ||
|     response = openai_client.chat.completions.create(
 | ||
|         model="default",
 | ||
|         messages=[
 | ||
|             {"role": "system", "content": "You are a helpful AI assistant."},  # system不是必需,可选
 | ||
|             {
 | ||
|                 "role": "user",
 | ||
|                 "content": [
 | ||
|                     {
 | ||
|                         "type": "image_url",
 | ||
|                         "image_url": {
 | ||
|                             "url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
 | ||
|                             "detail": "high",
 | ||
|                         },
 | ||
|                     },
 | ||
|                     {"type": "text", "text": "请描述图片内容"},
 | ||
|                 ],
 | ||
|             },
 | ||
|         ],
 | ||
|         temperature=1,
 | ||
|         max_tokens=53,
 | ||
|         extra_body={"return_token_ids": False},
 | ||
|         stream=True,
 | ||
|     )
 | ||
|     for chunk in response:
 | ||
|         assert hasattr(chunk, "choices")
 | ||
|         assert len(chunk.choices) > 0
 | ||
|         assert hasattr(chunk.choices[0], "delta")
 | ||
|         assert hasattr(chunk.choices[0].delta, "prompt_token_ids")
 | ||
|         assert chunk.choices[0].delta.prompt_token_ids is None
 | ||
|         assert hasattr(chunk.choices[0].delta, "completion_token_ids")
 | ||
|         assert chunk.choices[0].delta.completion_token_ids is None
 | ||
| 
 | ||
| 
 | ||
| def test_chat_with_thinking(openai_client, capsys):
 | ||
|     """
 | ||
|     Test enable_thinking & reasoning_max_tokens option in non-streaming chat functionality with the local service
 | ||
|     """
 | ||
|     # enable thinking, non-streaming
 | ||
|     response = openai_client.chat.completions.create(
 | ||
|         model="default",
 | ||
|         messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}],
 | ||
|         temperature=1,
 | ||
|         stream=False,
 | ||
|         max_tokens=10,
 | ||
|         extra_body={"chat_template_kwargs": {"enable_thinking": True}},
 | ||
|     )
 | ||
|     assert response.choices[0].message.reasoning_content is not None
 | ||
| 
 | ||
|     # disable thinking, non-streaming
 | ||
|     response = openai_client.chat.completions.create(
 | ||
|         model="default",
 | ||
|         messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}],
 | ||
|         temperature=1,
 | ||
|         stream=False,
 | ||
|         max_tokens=10,
 | ||
|         extra_body={"chat_template_kwargs": {"enable_thinking": False}},
 | ||
|     )
 | ||
|     assert response.choices[0].message.reasoning_content is None
 | ||
|     assert "</think>" not in response.choices[0].message.content
 | ||
| 
 | ||
|     # enable thinking, streaming
 | ||
|     reasoning_max_tokens = 3
 | ||
|     response = openai_client.chat.completions.create(
 | ||
|         model="default",
 | ||
|         messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}],
 | ||
|         temperature=1,
 | ||
|         extra_body={
 | ||
|             "chat_template_kwargs": {"enable_thinking": True},
 | ||
|             "reasoning_max_tokens": reasoning_max_tokens,
 | ||
|             "return_token_ids": True,
 | ||
|         },
 | ||
|         stream=True,
 | ||
|         max_tokens=10,
 | ||
|     )
 | ||
|     completion_tokens = 1
 | ||
|     reasoning_tokens = 0
 | ||
|     total_tokens = 0
 | ||
|     for chunk_id, chunk in enumerate(response):
 | ||
|         if chunk_id == 0:  # the first chunk is an extra chunk
 | ||
|             continue
 | ||
|         delta_message = chunk.choices[0].delta
 | ||
|         if delta_message.content != "" and delta_message.reasoning_content == "":
 | ||
|             completion_tokens += len(delta_message.completion_token_ids)
 | ||
|         elif delta_message.reasoning_content != "" and delta_message.content == "":
 | ||
|             reasoning_tokens += len(delta_message.completion_token_ids)
 | ||
|         total_tokens += len(delta_message.completion_token_ids)
 | ||
|     assert completion_tokens + reasoning_tokens == total_tokens
 | ||
|     assert reasoning_tokens <= reasoning_max_tokens
 | ||
| 
 | ||
| 
 | ||
| def test_profile_reset_block_num():
 | ||
|     """测试profile reset_block_num功能,与baseline diff不能超过5%"""
 | ||
|     log_file = "./log/config.log"
 | ||
|     baseline = 40000
 | ||
| 
 | ||
|     if not os.path.exists(log_file):
 | ||
|         pytest.fail(f"Log file not found: {log_file}")
 | ||
| 
 | ||
|     with open(log_file, "r") as f:
 | ||
|         log_lines = f.readlines()
 | ||
| 
 | ||
|     target_line = None
 | ||
|     for line in log_lines:
 | ||
|         if "Reset block num" in line:
 | ||
|             target_line = line.strip()
 | ||
|             break
 | ||
| 
 | ||
|     if target_line is None:
 | ||
|         pytest.fail("日志中没有Reset block num信息")
 | ||
| 
 | ||
|     match = re.search(r"total_block_num:(\d+)", target_line)
 | ||
|     if not match:
 | ||
|         pytest.fail(f"Failed to extract total_block_num from line: {target_line}")
 | ||
| 
 | ||
|     try:
 | ||
|         actual_value = int(match.group(1))
 | ||
|     except ValueError:
 | ||
|         pytest.fail(f"Invalid number format: {match.group(1)}")
 | ||
| 
 | ||
|     lower_bound = baseline * (1 - 0.05)
 | ||
|     upper_bound = baseline * (1 + 0.05)
 | ||
|     print(f"Reset total_block_num: {actual_value}. baseline: {baseline}")
 | ||
| 
 | ||
|     assert lower_bound <= actual_value <= upper_bound, (
 | ||
|         f"Reset total_block_num {actual_value} 与 baseline {baseline} diff需要在5%以内"
 | ||
|         f"Allowed range: [{lower_bound:.1f}, {upper_bound:.1f}]"
 | ||
|     )
 |