Files
FastDeploy/fastdeploy/input/qwen_vl_processor/process_video.py
Yuanle Liu cbce94a00e rename ernie_xxx to ernie4_5_xxx (#3621)
* rename ernie_xxx to ernie4_5_xxx

* ci fix
2025-08-26 19:29:27 +08:00

132 lines
4.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import math
from typing import Optional, Union
import numpy as np
from PIL import Image
from fastdeploy.input.ernie4_5_vl_processor import read_video_decord
def read_frames(video_path):
"""
Read and decode video frames from the given path
This function reads a video file and decodes it into individual RGB frames
using decord video reader. It also extracts video metadata including fps,
duration and frame count.
Args:
video_path (str): Path to the video file or bytes object containing video data
Returns:
tuple: A tuple containing:
frames (numpy.ndarray): Array of shape (num_frames, height, width, 3)
containing decoded RGB video frames
meta (dict): Dictionary containing video metadata:
- fps (float): Frames per second
- duration (float): Video duration in seconds
- num_of_frame (int): Total number of frames
- width (int): Frame width in pixels
- height (int): Frame height in pixels
Note:
- The function uses decord library for efficient video reading
- All frames are converted to RGB format regardless of input format
"""
reader, meta, _ = read_video_decord(video_path, save_to_disk=False)
frames = []
for i in range(meta["num_of_frame"]):
frame = reader[i].asnumpy()
image = Image.fromarray(frame, "RGB")
frames.append(image)
frames = np.stack([np.array(f.convert("RGB")) for f in frames], axis=0)
return frames, meta
def sample_frames(
video: np.ndarray,
frame_factor: int,
min_frames: int,
max_frames: int,
metadata: Optional[dict] = None,
fps: Optional[Union[int, float]] = None,
num_frames: Optional[int] = None,
):
"""
Sample frames from video according to specified criteria.
Args:
video: Input video frames as numpy array
frame_factor: Ensure sampled frames are multiples of this factor
min_frames: Minimum number of frames to sample
max_frames: Maximum number of frames to sample
metadata: Video metadata containing fps information
fps: Target frames per second for sampling
num_frames: Exact number of frames to sample
Returns:
np.ndarray: Sampled video frames
Raises:
ValueError: If both fps and num_frames are specified,
or if required metadata is missing,
or if requested frames exceed available frames
"""
if fps is not None and num_frames is not None:
raise ValueError("`num_frames` and `fps` are mutually exclusive arguments, please use only one!")
if fps is None and num_frames is None:
return video
total_num_frames = video.shape[0]
# If num_frames is not given but fps is, calculate num_frames from fps
if num_frames is not None:
num_frames = round(num_frames / frame_factor) * frame_factor
elif fps is not None:
if metadata is None:
raise ValueError(
"Asked to sample `fps` frames per second but no video metadata was provided which is required when sampling with `fps`. "
"Please pass in `VideoMetadata` object or use a fixed `num_frames` per input video"
)
max_frames = math.floor(min(max_frames, total_num_frames) / frame_factor) * frame_factor
num_frames = total_num_frames / metadata["fps"] * fps
num_frames = min(min(max(num_frames, min_frames), max_frames), total_num_frames)
num_frames = math.floor(num_frames / frame_factor) * frame_factor
if num_frames > total_num_frames:
raise ValueError(
f"Video can't be sampled. The inferred `num_frames={num_frames}` exceeds `total_num_frames={total_num_frames}`. "
"Decrease `num_frames` or `fps` for sampling."
)
# Calculate frame indices based on sampling strategy
if num_frames is not None:
# Evenly spaced sampling for target frame count
indices = np.arange(0, total_num_frames, total_num_frames / num_frames).astype(np.int32)
else:
# Keep all frames if no sampling requested
indices = np.arange(0, total_num_frames).astype(np.int32)
# Apply frame selection
video = video[indices]
return video