mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 9c150f0bfb
			
		
	
	9c150f0bfb
	
	
	
		
			
			* Add FDTensor copy and move assignment and constructor * Upgrade the transpose to receive the output tensor same as input tensor * Add note * Add realloc for FDTensor * Support output equals to input for softmax * Remove FDTensor::Alloc
		
			
				
	
	
		
			60 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			60 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <vector>
 | |
| #include "fastdeploy/core/fd_tensor.h"
 | |
| #include "fastdeploy/function/softmax.h"
 | |
| #include "glog/logging.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include "gtest_utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| 
 | |
| TEST(fastdeploy, softmax) {
 | |
|   FDTensor input, input1, output;
 | |
|   CheckShape check_shape;
 | |
|   CheckData check_data;
 | |
|   std::vector<float> inputs = {1, 2, 3, 4, 5, 6};
 | |
|   auto inputs1 = inputs;
 | |
|   std::vector<float> expected_result_axis0 = {
 | |
|       0.04742587, 0.04742587, 0.04742587, 0.95257413, 0.95257413, 0.95257413};
 | |
|   std::vector<float> expected_result_axis1 = {
 | |
|       0.09003057, 0.24472846, 0.66524088, 0.09003057, 0.24472846, 0.66524088};
 | |
|   input.SetExternalData({2, 3}, FDDataType::FP32, inputs.data());
 | |
|   input1.SetExternalData({2, 3}, FDDataType::FP32, inputs1.data());
 | |
| 
 | |
|   // axis = 0
 | |
|   Softmax(input, &output, 0);
 | |
|   check_shape(output.shape, {2, 3});
 | |
|   check_data(reinterpret_cast<const float*>(output.Data()),
 | |
|              expected_result_axis0.data(), expected_result_axis0.size());
 | |
|   // Test the case when output eqauls to input
 | |
|   Softmax(input, &input, 0);
 | |
|   check_shape(output.shape, {2, 3});
 | |
|   check_data(reinterpret_cast<const float*>(input.Data()),
 | |
|              expected_result_axis0.data(), expected_result_axis0.size());
 | |
| 
 | |
|   // axis = 1
 | |
|   Softmax(input1, &output, 1);
 | |
|   check_shape(output.shape, {2, 3});
 | |
|   check_data(reinterpret_cast<const float*>(output.Data()),
 | |
|              expected_result_axis1.data(), expected_result_axis1.size());
 | |
|   // Test the case when output eqauls to input
 | |
|   Softmax(input1, &input1, 1);
 | |
|   check_shape(output.shape, {2, 3});
 | |
|   check_data(reinterpret_cast<const float*>(input1.Data()),
 | |
|              expected_result_axis1.data(), expected_result_axis1.size());
 | |
| }
 | |
| 
 | |
| }  // namespace fastdeploy
 |