Files
FastDeploy/README.md
2022-08-12 21:06:04 +08:00

6.0 KiB
Raw Blame History

FastDeploy


FastDeploy是一款简单易用的推理部署工具箱。覆盖业界主流优质预训练模型并提供开箱即用的开发体验,包括图像分类、目标检测、图像分割、人脸检测、人体关键点识别、文字识别等多任务,满足开发者多场景多硬件多平台的快速部署需求。

发版历史

  • [v0.2.0] 2022.08.18 全面开源服务端部署代码支持40+视觉模型在CPU/GPU以及通过GPU TensorRT加速部署

支持模型

任务场景 模型 X64 CPU Nvidia-GPU Nvidia-GPU TensorRT
图像分类 PaddleClas/ResNet50
PaddleClas/PPLCNet
PaddleClas/EfficientNet
PaddleClas/GhostNet
PaddleClas/MobileNetV1
PaddleClas/MobileNetV2
PaddleClas/ShuffleNetV2
目标检测 PaddleDetection/PPYOLOE
PaddleDetection/PicoDet
PaddleDetection/YOLOX
PaddleDetection/YOLOv3
PaddleDetection/PPYOLO -
PaddleDetection/PPYOLOv2 -
PaddleDetection/FasterRCNN -

快速开始

安装FastDeploy Python

用户根据开发环境选择安装版本,更多安装环境参考安装文档.

pip install https://bj.bcebos.com/paddlehub/fastdeploy/wheels/fastdeploy_python-0.2.0-cp38-cp38-manylinux1_x86_64.whl

准备目标检测模型和测试图片

wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg

加载模型预测

import fastdeploy.vision as vis
import cv2

model = vis.detection.PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel",
                              "ppyoloe_crn_l_300e_coco/model.pdiparams",
                              "ppyoloe_crn_l_300e_coco/infer_cfg.yml")

im = cv2.imread("000000014439.jpg")
result = model.predict(im.copy())
print(result)

vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)

预测完成,可视化结果保存至vis_image.jpg,同时输出检测结果如下

DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
415.047363,89.311523, 506.009613, 283.863129, 0.950423, 0
163.665710,81.914894, 198.585342, 166.760880, 0.896433, 0
581.788635,113.027596, 612.623474, 198.521713, 0.842597, 0
267.217224,89.777321, 298.796051, 169.361496, 0.837951, 0
104.465599,45.482410, 127.688835, 93.533875, 0.773348, 0
...

更多部署示例

FastDeploy提供了大量部署示例供开发者参考支持模型在CPU、GPU以及TensorRT的部署

License

FastDeploy遵循Apache-2.0开源协议