Files
FastDeploy/tests/utils/test_config.py
Echo-Nie ff653503ff [Docs] Add License in Unittest (#4957)
* add copyright

* add CopyRight
2025-11-12 10:44:09 +08:00

138 lines
4.7 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
from unittest.mock import Mock
from fastdeploy import envs
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
LoadConfig,
ParallelConfig,
SchedulerConfig,
)
from fastdeploy.utils import get_host_ip
class TestConfig(unittest.TestCase):
def test_fdconfig_nnode(self):
parallel_config = ParallelConfig({"tensor_parallel_size": 16, "expert_parallel_size": 1})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
model_config = Mock()
model_config.max_model_len = 512
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
load_config=load_config,
cache_config=cache_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips=[get_host_ip(), "0.0.0.0"],
test_mode=True,
)
assert fd_config.nnode == 2
assert fd_config.is_master is True
def test_fdconfig_ips(self):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
model_config = Mock()
model_config.max_model_len = 512
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
load_config=load_config,
cache_config=cache_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips="0.0.0.0",
test_mode=True,
)
assert fd_config.master_ip == "0.0.0.0"
def test_fdconfig_max_num_tokens(self):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
load_config = LoadConfig({})
cache_config.enable_chunked_prefill = True
scheduler_config = SchedulerConfig({})
model_config: Mock = Mock()
model_config.max_model_len = 512
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips="0.0.0.0",
test_mode=True,
)
if not envs.ENABLE_V1_KVCACHE_SCHEDULER:
assert fd_config.scheduler_config.max_num_batched_tokens == 2048
cache_config.enable_chunked_prefill = False
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips="0.0.0.0",
test_mode=True,
)
if not envs.ENABLE_V1_KVCACHE_SCHEDULER:
assert fd_config.scheduler_config.max_num_batched_tokens == 8192
def test_fdconfig_init_cache(self):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
cache_config.cache_transfer_protocol = "rdma,ipc"
cache_config.pd_comm_port = "2334"
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
scheduler_config.splitwise_role = "prefill"
model_config: Mock = Mock()
model_config.max_model_len = 512
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
model_config=model_config,
test_mode=True,
)
fd_config.init_cache_info()
assert fd_config.disaggregate_info["role"] == "prefill"
if __name__ == "__main__":
unittest.main()