Files
FastDeploy/tools/deep_gemm_pre-compile/generate_config.py
GoldPancake 09bbac6de0 Add DeepGEMM pre-compile tools (#2819)
This tool allows you to compile all possible kernels in advance through the model's config.json, and avoids the situation where uncompiled kernel is encountered and JIT is executed when certain requests arrive.
2025-07-14 14:56:41 +08:00

152 lines
5.3 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import logging
import math
import os
from typing import Tuple
from fastdeploy.model_executor.ops.gpu.deep_gemm.jit_kernels.gemm import \
get_smem_config
logger = logging.getLogger(__name__)
console_handler = logging.StreamHandler()
logger.addHandler(console_handler)
logger.setLevel(os.getenv("PRE_COMPILE_LOG_LEVEL", "INFO"))
def generate_kn_pairs(model_cfg: dict) -> Tuple[list, list, list]:
hidden_size = model_cfg["hidden_size"]
intermediate_size = model_cfg["intermediate_size"]
moe_intermediate_size = model_cfg["moe_intermediate_size"]
num_attention_heads = model_cfg["num_attention_heads"]
num_key_value_heads = model_cfg["num_key_value_heads"]
head_dim = int(hidden_size / num_attention_heads)
gemm_kn_pairs = [
# Dense normal gemm
[hidden_size, intermediate_size * 2],
[intermediate_size, hidden_size],
[hidden_size, hidden_size],
[hidden_size, (num_attention_heads + num_key_value_heads * 2) * head_dim],
]
grouped_gemm_contiguous_kn_pairs = [
# Moe grouped gemm contiguous
[hidden_size, moe_intermediate_size * 2],
[moe_intermediate_size, hidden_size],
]
grouped_gemm_masked_kn_pairs = [
# Moe grouped gemm masked
[hidden_size, moe_intermediate_size * 2],
[moe_intermediate_size, hidden_size],
]
return gemm_kn_pairs, grouped_gemm_contiguous_kn_pairs, grouped_gemm_masked_kn_pairs
def generate_json(
kn_pairs: list,
moe_num_experts: int,
output_path: str,
is_grouped_contiguous: bool = False,
is_grouped_masked: bool = False,
):
if not is_grouped_contiguous:
BLOCK_MS = [64, 128, 256]
else:
BLOCK_MS = [128]
BLOCK_NS = list(range(16, 129, 8)) + [144, 160]
TMA_MULTICAST_CONFIGS = [(1, True), (1, False), (2, True), (2, False)]
counter = 0
with open(output_path, "a+", encoding="utf-8") as f:
for block_m in BLOCK_MS:
for block_n in BLOCK_NS:
if 128 % block_n != 0 and 128 // math.gcd(128, block_n) <= 4:
NUM_STAGES = [4, 3]
else:
NUM_STAGES = [8, 7, 6, 5, 4, 3]
for num_stages in NUM_STAGES:
for kn_pair in kn_pairs:
smem_config = get_smem_config(
num_stages, kn_pair[0], block_m, block_n
)
for tma_multicast_config in TMA_MULTICAST_CONFIGS:
cfg = {
"N": kn_pair[1],
"K": kn_pair[0],
"BLOCK_M": block_m,
"BLOCK_N": block_n,
"SWIZZLE_D_MODE": smem_config[1],
"BLOCK_N_PADDING": smem_config[2],
"NUM_STAGES": num_stages,
"NUM_TMA_MULTICAST": tma_multicast_config[0],
"IS_TMA_MULTICAST_ON_A": tma_multicast_config[1],
"IS_GROUPED_CONTIGUOUS": is_grouped_contiguous,
"IS_GROUPED_MASKED": is_grouped_masked,
"MOE_NUM_EXPERTS": moe_num_experts,
}
f.write(json.dumps(cfg) + "\n")
counter += 1
return counter
def main(args):
with open(os.path.join(args.model, "config.json"), "r") as f:
model_cfg = json.load(f)
gemm_kn_pairs, grouped_gemm_contiguous_kn_pairs, grouped_gemm_masked_kn_pairs = (
generate_kn_pairs(model_cfg)
)
num_gemm = generate_json(
gemm_kn_pairs,
model_cfg["moe_num_experts"],
args.output,
)
num_grouped_contiguous = generate_json(
grouped_gemm_contiguous_kn_pairs,
model_cfg["moe_num_experts"],
args.output,
is_grouped_contiguous=True,
)
num_grouped_masked = generate_json(
grouped_gemm_masked_kn_pairs,
model_cfg["moe_num_experts"],
args.output,
is_grouped_masked=True,
)
logger.info(f"Configurations generated and saved to {args.output}")
logger.info(f"Generated {num_gemm} gemm configuration.")
logger.info(
f"Generated {num_grouped_contiguous} grouped_gemm_contiguous configuration."
)
logger.info(f"Generated {num_grouped_masked} grouped_gemm_masked configuration.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
required=True,
)
parser.add_argument(
"--output",
type=str,
default="./deep_gemm_pre_compile_config.jsonl",
)
args = parser.parse_args()
main(args)