mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Refactor the PaddleClas module * fix bug * remove debug code * clean unused code * support pybind * Update fd_tensor.h * Update fd_tensor.cc * temporary revert python api * fix ci error * fix code style problem
116 lines
4.4 KiB
Python
116 lines
4.4 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
import logging
|
|
from .... import FastDeployModel, ModelFormat
|
|
from .... import c_lib_wrap as C
|
|
|
|
|
|
class PaddleClasPreprocessor:
|
|
def __init__(self, config_file):
|
|
"""Create a preprocessor for PaddleClasModel from configuration file
|
|
|
|
:param config_file: (str)Path of configuration file, e.g resnet50/inference_cls.yaml
|
|
"""
|
|
self._preprocessor = C.vision.classification.PaddleClasPreprocessor(
|
|
config_file)
|
|
|
|
def run(self, input_ims):
|
|
"""Preprocess input images for PaddleClasModel
|
|
|
|
:param: input_ims: (list of numpy.ndarray)The input image
|
|
:return: list of FDTensor
|
|
"""
|
|
return self._preprocessor.run(input_ims)
|
|
|
|
|
|
class PaddleClasPostprocessor:
|
|
def __init__(self, topk=1):
|
|
"""Create a postprocessor for PaddleClasModel
|
|
|
|
:param topk: (int)Filter the top k classify label
|
|
"""
|
|
self._postprocessor = C.vision.classification.PaddleClasPostprocessor(
|
|
topk)
|
|
|
|
def run(self, runtime_results):
|
|
"""Postprocess the runtime results for PaddleClasModel
|
|
|
|
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
|
:return: list of ClassifyResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
|
"""
|
|
return self._postprocessor.run(runtime_results)
|
|
|
|
|
|
class PaddleClasModel(FastDeployModel):
|
|
def __init__(self,
|
|
model_file,
|
|
params_file,
|
|
config_file,
|
|
runtime_option=None,
|
|
model_format=ModelFormat.PADDLE):
|
|
"""Load a image classification model exported by PaddleClas.
|
|
|
|
:param model_file: (str)Path of model file, e.g resnet50/inference.pdmodel
|
|
:param params_file: (str)Path of parameters file, e.g resnet50/inference.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
:param config_file: (str) Path of configuration file for deploy, e.g resnet50/inference_cls.yaml
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
"""
|
|
|
|
super(PaddleClasModel, self).__init__(runtime_option)
|
|
|
|
assert model_format == ModelFormat.PADDLE, "PaddleClasModel only support model format of ModelFormat.PADDLE now."
|
|
self._model = C.vision.classification.PaddleClasModel(
|
|
model_file, params_file, config_file, self._runtime_option,
|
|
model_format)
|
|
assert self.initialized, "PaddleClas model initialize failed."
|
|
|
|
def predict(self, im, topk=1):
|
|
"""Classify an input image
|
|
|
|
:param im: (numpy.ndarray) The input image data, a 3-D array with layout HWC, BGR format
|
|
:param topk: (int) Filter the topk classify result, default 1
|
|
:return: ClassifyResult
|
|
"""
|
|
|
|
self.postprocessor.topk = topk
|
|
return self._model.predict(im)
|
|
|
|
def batch_predict(self, images):
|
|
"""Classify a batch of input image
|
|
|
|
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
|
:return list of ClassifyResult
|
|
"""
|
|
|
|
return self._model.batch_predict(images)
|
|
|
|
@property
|
|
def preprocessor(self):
|
|
"""Get PaddleClasPreprocessor object of the loaded model
|
|
|
|
:return PaddleClasPreprocessor
|
|
"""
|
|
return self._model.preprocessor
|
|
|
|
@property
|
|
def postprocessor(self):
|
|
"""Get PaddleClasPostprocessor object of the loaded model
|
|
|
|
:return PaddleClasPostprocessor
|
|
"""
|
|
return self._model.postprocessor
|