mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Refactor the PaddleClas module * fix bug * remove debug code * clean unused code * support pybind * Update fd_tensor.h * Update fd_tensor.cc * temporary revert python api * fix ci error * fix code style problem
77 lines
3.6 KiB
C++
77 lines
3.6 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "fastdeploy/pybind/main.h"
|
|
|
|
namespace fastdeploy {
|
|
void BindPaddleClas(pybind11::module& m) {
|
|
pybind11::class_<vision::classification::PaddleClasPreprocessor>(
|
|
m, "PaddleClasPreprocessor")
|
|
.def(pybind11::init<std::string>())
|
|
.def("run", [](vision::classification::PaddleClasPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
|
std::vector<vision::FDMat> images;
|
|
for (size_t i = 0; i < im_list.size(); ++i) {
|
|
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
|
}
|
|
std::vector<FDTensor> outputs;
|
|
if (!self.Run(&images, &outputs)) {
|
|
pybind11::eval("raise Exception('Failed to preprocess the input data in PaddleClasPreprocessor.')");
|
|
}
|
|
return outputs;
|
|
});
|
|
|
|
pybind11::class_<vision::classification::PaddleClasPostprocessor>(
|
|
m, "PaddleClasPostprocessor")
|
|
.def(pybind11::init<int>())
|
|
.def("run", [](vision::classification::PaddleClasPostprocessor& self, std::vector<FDTensor>& inputs) {
|
|
std::vector<vision::ClassifyResult> results;
|
|
if (!self.Run(inputs, &results)) {
|
|
pybind11::eval("raise Exception('Failed to postprocess the runtime result in PaddleClasPostprocessor.')");
|
|
}
|
|
return results;
|
|
})
|
|
.def("run", [](vision::classification::PaddleClasPostprocessor& self, std::vector<pybind11::array>& input_array) {
|
|
std::vector<vision::ClassifyResult> results;
|
|
std::vector<FDTensor> inputs;
|
|
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
|
if (!self.Run(inputs, &results)) {
|
|
pybind11::eval("raise Exception('Failed to postprocess the runtime result in PaddleClasPostprocessor.')");
|
|
}
|
|
return results;
|
|
})
|
|
.def_property("topk", &vision::classification::PaddleClasPostprocessor::GetTopk, &vision::classification::PaddleClasPostprocessor::SetTopk);
|
|
|
|
pybind11::class_<vision::classification::PaddleClasModel, FastDeployModel>(
|
|
m, "PaddleClasModel")
|
|
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
|
ModelFormat>())
|
|
.def("predict", [](vision::classification::PaddleClasModel& self, pybind11::array& data) {
|
|
cv::Mat im = PyArrayToCvMat(data);
|
|
vision::ClassifyResult result;
|
|
self.Predict(im, &result);
|
|
return result;
|
|
})
|
|
.def("batch_predict", [](vision::classification::PaddleClasModel& self, std::vector<pybind11::array>& data) {
|
|
std::vector<cv::Mat> images;
|
|
for (size_t i = 0; i < data.size(); ++i) {
|
|
images.push_back(PyArrayToCvMat(data[i]));
|
|
}
|
|
std::vector<vision::ClassifyResult> results;
|
|
self.BatchPredict(images, &results);
|
|
return results;
|
|
})
|
|
.def_property_readonly("preprocessor", &vision::classification::PaddleClasModel::GetPreprocessor)
|
|
.def_property_readonly("postprocessor", &vision::classification::PaddleClasModel::GetPostprocessor);
|
|
}
|
|
} // namespace fastdeploy
|