Files
FastDeploy/fastdeploy/vision/classification/ppcls/ppcls_pybind.cc
Jason 3589c0fa94 [Model] Refactor PaddleClas module (#505)
* Refactor the PaddleClas module

* fix bug

* remove debug code

* clean unused code

* support pybind

* Update fd_tensor.h

* Update fd_tensor.cc

* temporary revert python api

* fix ci error

* fix code style problem
2022-11-07 19:33:47 +08:00

77 lines
3.6 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindPaddleClas(pybind11::module& m) {
pybind11::class_<vision::classification::PaddleClasPreprocessor>(
m, "PaddleClasPreprocessor")
.def(pybind11::init<std::string>())
.def("run", [](vision::classification::PaddleClasPreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) {
pybind11::eval("raise Exception('Failed to preprocess the input data in PaddleClasPreprocessor.')");
}
return outputs;
});
pybind11::class_<vision::classification::PaddleClasPostprocessor>(
m, "PaddleClasPostprocessor")
.def(pybind11::init<int>())
.def("run", [](vision::classification::PaddleClasPostprocessor& self, std::vector<FDTensor>& inputs) {
std::vector<vision::ClassifyResult> results;
if (!self.Run(inputs, &results)) {
pybind11::eval("raise Exception('Failed to postprocess the runtime result in PaddleClasPostprocessor.')");
}
return results;
})
.def("run", [](vision::classification::PaddleClasPostprocessor& self, std::vector<pybind11::array>& input_array) {
std::vector<vision::ClassifyResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results)) {
pybind11::eval("raise Exception('Failed to postprocess the runtime result in PaddleClasPostprocessor.')");
}
return results;
})
.def_property("topk", &vision::classification::PaddleClasPostprocessor::GetTopk, &vision::classification::PaddleClasPostprocessor::SetTopk);
pybind11::class_<vision::classification::PaddleClasModel, FastDeployModel>(
m, "PaddleClasModel")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict", [](vision::classification::PaddleClasModel& self, pybind11::array& data) {
cv::Mat im = PyArrayToCvMat(data);
vision::ClassifyResult result;
self.Predict(im, &result);
return result;
})
.def("batch_predict", [](vision::classification::PaddleClasModel& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::ClassifyResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly("preprocessor", &vision::classification::PaddleClasModel::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::classification::PaddleClasModel::GetPostprocessor);
}
} // namespace fastdeploy