mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 da94fc46cf
			
		
	
	da94fc46cf
	
	
	
		
			
			* add GPL lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * support yolov8 * add pybind for yolov8 * add yolov8 readme * add cpp benchmark * add cpu and gpu mem * public part split * add runtime mode * fixed bugs * add cpu_thread_nums * deal with comments * deal with comments * deal with comments * rm useless code * add FASTDEPLOY_DECL * add FASTDEPLOY_DECL * fixed for windows * mv rss to pss * mv rss to pss * Update utils.cc * use thread to collect mem * Add ResourceUsageMonitor * rm useless code * fixed bug * fixed typo * update ResourceUsageMonitor * fixed bug * fixed bug * add note for ResourceUsageMonitor * deal with comments * add macros * deal with comments * deal with comments * deal with comments * re-lint * rm pmap and use mem api * rm pmap and use mem api * add mem api * Add PrintBenchmarkInfo func * Add PrintBenchmarkInfo func * Add PrintBenchmarkInfo func * deal with comments * fixed enable_paddle_to_trt * add log for paddle_trt * support ppcls benchmark * use new trt option api * update benchmark info * simplify benchmark.cc * simplify benchmark.cc * deal with comments --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
		
			
				
	
	
		
			353 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			353 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import fastdeploy as fd
 | |
| import cv2
 | |
| import os
 | |
| import numpy as np
 | |
| import time
 | |
| 
 | |
| from fastdeploy import ModelFormat
 | |
| 
 | |
| 
 | |
| def parse_arguments():
 | |
|     import argparse
 | |
|     import ast
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument(
 | |
|         "--model", required=True, help="Path of Yolo onnx model.")
 | |
|     parser.add_argument(
 | |
|         "--image", type=str, required=False, help="Path of test image file.")
 | |
|     parser.add_argument(
 | |
|         "--cpu_num_thread",
 | |
|         type=int,
 | |
|         default=8,
 | |
|         help="default number of cpu thread.")
 | |
|     parser.add_argument(
 | |
|         "--device_id", type=int, default=0, help="device(gpu) id")
 | |
|     parser.add_argument(
 | |
|         "--iter_num",
 | |
|         required=True,
 | |
|         type=int,
 | |
|         default=300,
 | |
|         help="number of iterations for computing performace.")
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         default="cpu",
 | |
|         help="Type of inference device, support 'cpu' or 'gpu'.")
 | |
|     parser.add_argument(
 | |
|         "--backend",
 | |
|         type=str,
 | |
|         default="default",
 | |
|         help="inference backend, default, ort, ov, trt, paddle, paddle_trt.")
 | |
|     parser.add_argument(
 | |
|         "--enable_trt_fp16",
 | |
|         type=ast.literal_eval,
 | |
|         default=False,
 | |
|         help="whether enable fp16 in trt backend")
 | |
|     parser.add_argument(
 | |
|         "--enable_collect_memory_info",
 | |
|         type=ast.literal_eval,
 | |
|         default=False,
 | |
|         help="whether enable collect memory info")
 | |
|     args = parser.parse_args()
 | |
|     return args
 | |
| 
 | |
| 
 | |
| def build_option(args):
 | |
|     option = fd.RuntimeOption()
 | |
|     device = args.device
 | |
|     backend = args.backend
 | |
|     enable_trt_fp16 = args.enable_trt_fp16
 | |
|     option.set_cpu_thread_num(args.cpu_num_thread)
 | |
|     if device == "gpu":
 | |
|         option.use_gpu()
 | |
|         if backend == "ort":
 | |
|             option.use_ort_backend()
 | |
|         elif backend == "paddle":
 | |
|             option.use_paddle_backend()
 | |
|         elif backend == "ov":
 | |
|             option.use_openvino_backend()
 | |
|             option.set_openvino_device(name="GPU")
 | |
|             # change name and shape for models
 | |
|             option.set_openvino_shape_info({"images": [1, 3, 640, 640]})
 | |
|         elif backend in ["trt", "paddle_trt"]:
 | |
|             option.use_trt_backend()
 | |
|             if backend == "paddle_trt":
 | |
|                 option.use_paddle_infer_backend()
 | |
|                 option.paddle_infer_option.enable_trt = True
 | |
|             if enable_trt_fp16:
 | |
|                 option.enable_trt_fp16()
 | |
|         elif backend == "default":
 | |
|             return option
 | |
|         else:
 | |
|             raise Exception(
 | |
|                 "While inference with GPU, only support default/ort/paddle/trt/paddle_trt now, {} is not supported.".
 | |
|                 format(backend))
 | |
|     elif device == "cpu":
 | |
|         if backend == "ort":
 | |
|             option.use_ort_backend()
 | |
|         elif backend == "ov":
 | |
|             option.use_openvino_backend()
 | |
|         elif backend == "paddle":
 | |
|             option.use_paddle_backend()
 | |
|         elif backend == "default":
 | |
|             return option
 | |
|         else:
 | |
|             raise Exception(
 | |
|                 "While inference with CPU, only support default/ort/ov/paddle now, {} is not supported.".
 | |
|                 format(backend))
 | |
|     else:
 | |
|         raise Exception(
 | |
|             "Only support device CPU/GPU now, {} is not supported.".format(
 | |
|                 device))
 | |
| 
 | |
|     return option
 | |
| 
 | |
| 
 | |
| class StatBase(object):
 | |
|     """StatBase"""
 | |
|     nvidia_smi_path = "nvidia-smi"
 | |
|     gpu_keys = ('index', 'uuid', 'name', 'timestamp', 'memory.total',
 | |
|                 'memory.free', 'memory.used', 'utilization.gpu',
 | |
|                 'utilization.memory')
 | |
|     nu_opt = ',nounits'
 | |
|     cpu_keys = ('cpu.util', 'memory.util', 'memory.used')
 | |
| 
 | |
| 
 | |
| class Monitor(StatBase):
 | |
|     """Monitor"""
 | |
| 
 | |
|     def __init__(self, use_gpu=False, gpu_id=0, interval=0.1):
 | |
|         self.result = {}
 | |
|         self.gpu_id = gpu_id
 | |
|         self.use_gpu = use_gpu
 | |
|         self.interval = interval
 | |
|         self.cpu_stat_q = multiprocessing.Queue()
 | |
| 
 | |
|     def start(self):
 | |
|         cmd = '%s --id=%s --query-gpu=%s --format=csv,noheader%s -lms 50' % (
 | |
|             StatBase.nvidia_smi_path, self.gpu_id, ','.join(StatBase.gpu_keys),
 | |
|             StatBase.nu_opt)
 | |
|         if self.use_gpu:
 | |
|             self.gpu_stat_worker = subprocess.Popen(
 | |
|                 cmd,
 | |
|                 stderr=subprocess.STDOUT,
 | |
|                 stdout=subprocess.PIPE,
 | |
|                 shell=True,
 | |
|                 close_fds=True,
 | |
|                 preexec_fn=os.setsid)
 | |
|         # cpu stat
 | |
|         pid = os.getpid()
 | |
|         self.cpu_stat_worker = multiprocessing.Process(
 | |
|             target=self.cpu_stat_func,
 | |
|             args=(self.cpu_stat_q, pid, self.interval))
 | |
|         self.cpu_stat_worker.start()
 | |
| 
 | |
|     def stop(self):
 | |
|         try:
 | |
|             if self.use_gpu:
 | |
|                 os.killpg(self.gpu_stat_worker.pid, signal.SIGUSR1)
 | |
|             # os.killpg(p.pid, signal.SIGTERM)
 | |
|             self.cpu_stat_worker.terminate()
 | |
|             self.cpu_stat_worker.join(timeout=0.01)
 | |
|         except Exception as e:
 | |
|             print(e)
 | |
|             return
 | |
| 
 | |
|         # gpu
 | |
|         if self.use_gpu:
 | |
|             lines = self.gpu_stat_worker.stdout.readlines()
 | |
|             lines = [
 | |
|                 line.strip().decode("utf-8") for line in lines
 | |
|                 if line.strip() != ''
 | |
|             ]
 | |
|             gpu_info_list = [{
 | |
|                 k: v
 | |
|                 for k, v in zip(StatBase.gpu_keys, line.split(', '))
 | |
|             } for line in lines]
 | |
|             if len(gpu_info_list) == 0:
 | |
|                 return
 | |
|             result = gpu_info_list[0]
 | |
|             for item in gpu_info_list:
 | |
|                 for k in item.keys():
 | |
|                     if k not in ["name", "uuid", "timestamp"]:
 | |
|                         result[k] = max(int(result[k]), int(item[k]))
 | |
|                     else:
 | |
|                         result[k] = max(result[k], item[k])
 | |
|             self.result['gpu'] = result
 | |
| 
 | |
|         # cpu
 | |
|         cpu_result = {}
 | |
|         if self.cpu_stat_q.qsize() > 0:
 | |
|             cpu_result = {
 | |
|                 k: v
 | |
|                 for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
 | |
|             }
 | |
|         while not self.cpu_stat_q.empty():
 | |
|             item = {
 | |
|                 k: v
 | |
|                 for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
 | |
|             }
 | |
|             for k in StatBase.cpu_keys:
 | |
|                 cpu_result[k] = max(cpu_result[k], item[k])
 | |
|         cpu_result['name'] = cpuinfo.get_cpu_info()['brand_raw']
 | |
|         self.result['cpu'] = cpu_result
 | |
| 
 | |
|     def output(self):
 | |
|         return self.result
 | |
| 
 | |
|     def cpu_stat_func(self, q, pid, interval=0.0):
 | |
|         """cpu stat function"""
 | |
|         stat_info = psutil.Process(pid)
 | |
|         while True:
 | |
|             # pid = os.getpid()
 | |
|             cpu_util, mem_util, mem_use = stat_info.cpu_percent(
 | |
|             ), stat_info.memory_percent(), round(stat_info.memory_info().rss /
 | |
|                                                  1024.0 / 1024.0, 4)
 | |
|             q.put([cpu_util, mem_util, mem_use])
 | |
|             time.sleep(interval)
 | |
|         return
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
| 
 | |
|     args = parse_arguments()
 | |
|     option = build_option(args)
 | |
|     model_file = args.model
 | |
| 
 | |
|     gpu_id = args.device_id
 | |
|     enable_collect_memory_info = args.enable_collect_memory_info
 | |
|     dump_result = dict()
 | |
|     end2end_statis = list()
 | |
|     cpu_mem = list()
 | |
|     gpu_mem = list()
 | |
|     gpu_util = list()
 | |
|     if args.device == "cpu":
 | |
|         file_path = args.model + "_model_" + args.backend + "_" + \
 | |
|             args.device + "_" + str(args.cpu_num_thread) + ".txt"
 | |
|     else:
 | |
|         if args.enable_trt_fp16:
 | |
|             file_path = args.model + "_model_" + args.backend + "_fp16_" + args.device + ".txt"
 | |
|         else:
 | |
|             file_path = args.model + "_model_" + args.backend + "_" + args.device + ".txt"
 | |
|     f = open(file_path, "w")
 | |
|     f.writelines("===={}====: \n".format(os.path.split(file_path)[-1][:-4]))
 | |
| 
 | |
|     try:
 | |
|         if "yolox" in model_file:
 | |
|             if ".onnx" in model_file:
 | |
|                 model = fd.vision.detection.YOLOX(
 | |
|                     model_file, runtime_option=option)
 | |
|             else:
 | |
|                 model_file = os.path.join(args.model, "model.pdmodel")
 | |
|                 params_file = os.path.join(args.model, "model.pdiparams")
 | |
|                 model = fd.vision.detection.YOLOX(
 | |
|                     model_file,
 | |
|                     params_file,
 | |
|                     runtime_option=option,
 | |
|                     model_format=ModelFormat.PADDLE)
 | |
|         elif "yolov5" in model_file:
 | |
|             if ".onnx" in model_file:
 | |
|                 model = fd.vision.detection.YOLOv5(
 | |
|                     model_file, runtime_option=option)
 | |
|             else:
 | |
|                 model_file = os.path.join(args.model, "model.pdmodel")
 | |
|                 params_file = os.path.join(args.model, "model.pdiparams")
 | |
|                 model = fd.vision.detection.YOLOv5(
 | |
|                     model_file,
 | |
|                     params_file,
 | |
|                     runtime_option=option,
 | |
|                     model_format=ModelFormat.PADDLE)
 | |
|         elif "yolov6" in model_file:
 | |
|             if ".onnx" in model_file:
 | |
|                 model = fd.vision.detection.YOLOv6(
 | |
|                     model_file, runtime_option=option)
 | |
|             else:
 | |
|                 model_file = os.path.join(args.model, "model.pdmodel")
 | |
|                 params_file = os.path.join(args.model, "model.pdiparams")
 | |
|                 model = fd.vision.detection.YOLOv6(
 | |
|                     model_file,
 | |
|                     params_file,
 | |
|                     runtime_option=option,
 | |
|                     model_format=ModelFormat.PADDLE)
 | |
|         elif "yolov7" in model_file:
 | |
|             if ".onnx" in model_file:
 | |
|                 model = fd.vision.detection.YOLOv7(
 | |
|                     model_file, runtime_option=option)
 | |
|             else:
 | |
|                 model_file = os.path.join(args.model, "model.pdmodel")
 | |
|                 params_file = os.path.join(args.model, "model.pdiparams")
 | |
|                 model = fd.vision.detection.YOLOv7(
 | |
|                     model_file,
 | |
|                     params_file,
 | |
|                     runtime_option=option,
 | |
|                     model_format=ModelFormat.PADDLE)
 | |
|         else:
 | |
|             raise Exception("model {} not support now in yolo series".format(
 | |
|                 args.model))
 | |
|         if enable_collect_memory_info:
 | |
|             import multiprocessing
 | |
|             import subprocess
 | |
|             import psutil
 | |
|             import signal
 | |
|             import cpuinfo
 | |
|             enable_gpu = args.device == "gpu"
 | |
|             monitor = Monitor(enable_gpu, gpu_id)
 | |
|             monitor.start()
 | |
| 
 | |
|         model.enable_record_time_of_runtime()
 | |
|         im_ori = cv2.imread(args.image)
 | |
|         for i in range(args.iter_num):
 | |
|             im = im_ori
 | |
|             start = time.time()
 | |
|             result = model.predict(im)
 | |
|             end2end_statis.append(time.time() - start)
 | |
| 
 | |
|         runtime_statis = model.print_statis_info_of_runtime()
 | |
| 
 | |
|         warmup_iter = args.iter_num // 5
 | |
|         end2end_statis_repeat = end2end_statis[warmup_iter:]
 | |
|         if enable_collect_memory_info:
 | |
|             monitor.stop()
 | |
|             mem_info = monitor.output()
 | |
|             dump_result["cpu_rss_mb"] = mem_info['cpu'][
 | |
|                 'memory.used'] if 'cpu' in mem_info else 0
 | |
|             dump_result["gpu_rss_mb"] = mem_info['gpu'][
 | |
|                 'memory.used'] if 'gpu' in mem_info else 0
 | |
|             dump_result["gpu_util"] = mem_info['gpu'][
 | |
|                 'utilization.gpu'] if 'gpu' in mem_info else 0
 | |
| 
 | |
|         dump_result["runtime"] = runtime_statis["avg_time"] * 1000
 | |
|         dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
 | |
| 
 | |
|         f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
 | |
|         f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
 | |
|         print("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
 | |
|         print("End2End(ms): {} \n".format(str(dump_result["end2end"])))
 | |
|         if enable_collect_memory_info:
 | |
|             f.writelines("cpu_rss_mb: {} \n".format(
 | |
|                 str(dump_result["cpu_rss_mb"])))
 | |
|             f.writelines("gpu_rss_mb: {} \n".format(
 | |
|                 str(dump_result["gpu_rss_mb"])))
 | |
|             f.writelines("gpu_util: {} \n".format(
 | |
|                 str(dump_result["gpu_util"])))
 | |
|             print("cpu_rss_mb: {} \n".format(str(dump_result["cpu_rss_mb"])))
 | |
|             print("gpu_rss_mb: {} \n".format(str(dump_result["gpu_rss_mb"])))
 | |
|             print("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
 | |
|     except:
 | |
|         f.writelines("!!!!!Infer Failed\n")
 | |
| 
 | |
|     f.close()
 |