mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 2f8d9c9a57
			
		
	
	2f8d9c9a57
	
	
	
		
			
			* avoid mem copy for cpp benchmark * set CMAKE_BUILD_TYPE to Release * Add SegmentationDiff * change pointer to reference * fixed bug * cast uint8 to int32
		
			
				
	
	
		
			62 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			62 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "flags.h"
 | |
| #include "macros.h"
 | |
| #include "option.h"
 | |
| 
 | |
| namespace vision = fastdeploy::vision;
 | |
| namespace benchmark = fastdeploy::benchmark;
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
| #if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
 | |
|   // Initialization
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   if (!CreateRuntimeOption(&option, argc, argv, true)) {
 | |
|     return -1;
 | |
|   }
 | |
|   auto im = cv::imread(FLAGS_image);
 | |
|   // Set max_batch_size 1 for best performance
 | |
|   if (FLAGS_backend == "paddle_trt") {
 | |
|     option.trt_option.max_batch_size = 1;
 | |
|   }
 | |
|   auto model_file = FLAGS_model + sep + "inference.pdmodel";
 | |
|   auto params_file = FLAGS_model + sep + "inference.pdiparams";
 | |
|   auto config_file = FLAGS_model + sep + "inference_cls.yaml";
 | |
|   auto model_ppcls = vision::classification::PaddleClasModel(
 | |
|       model_file, params_file, config_file, option);
 | |
|   vision::ClassifyResult res;
 | |
|   // Run once at least
 | |
|   model_ppcls.Predict(im, &res);
 | |
|   // 1. Test result diff
 | |
|   std::cout << "=============== Test result diff =================\n";
 | |
|   // Save result to -> disk.
 | |
|   std::string cls_result_path = "ppcls_result.txt";
 | |
|   benchmark::ResultManager::SaveClassifyResult(res, cls_result_path);
 | |
|   // Load result from <- disk.
 | |
|   vision::ClassifyResult res_loaded;
 | |
|   benchmark::ResultManager::LoadClassifyResult(&res_loaded, cls_result_path);
 | |
|   // Calculate diff between two results.
 | |
|   auto cls_diff =
 | |
|       benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
 | |
|   std::cout << "Labels diff: mean=" << cls_diff.labels.mean
 | |
|             << ", max=" << cls_diff.labels.max
 | |
|             << ", min=" << cls_diff.labels.min << std::endl;
 | |
|   std::cout << "Scores diff: mean=" << cls_diff.scores.mean
 | |
|             << ", max=" << cls_diff.scores.max
 | |
|             << ", min=" << cls_diff.scores.min << std::endl;
 | |
|   BENCHMARK_MODEL(model_ppcls, model_ppcls.Predict(im, &res))
 | |
| #endif
 | |
|   return 0;
 | |
| } |