mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* add accuracy scripts * add accuracy scripts * Add FlyCV doc * fix conflict * fix conflict * fix conflict
175 lines
5.6 KiB
Python
175 lines
5.6 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--det_model", required=True, help="Path of Detection model of PPOCR.")
|
||
parser.add_argument(
|
||
"--cls_model",
|
||
required=True,
|
||
help="Path of Classification model of PPOCR.")
|
||
parser.add_argument(
|
||
"--rec_model",
|
||
required=True,
|
||
help="Path of Recognization model of PPOCR.")
|
||
parser.add_argument(
|
||
"--rec_label_file",
|
||
required=True,
|
||
help="Path of Recognization model of PPOCR.")
|
||
parser.add_argument(
|
||
"--image", type=str, required=True, help="Path of test image file.")
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
default='cpu',
|
||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||
parser.add_argument(
|
||
"--backend",
|
||
type=str,
|
||
default="default",
|
||
help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu"
|
||
)
|
||
parser.add_argument(
|
||
"--device_id",
|
||
type=int,
|
||
default=0,
|
||
help="Define which GPU card used to run model.")
|
||
parser.add_argument(
|
||
"--cpu_thread_num",
|
||
type=int,
|
||
default=9,
|
||
help="Number of threads while inference on CPU.")
|
||
return parser.parse_args()
|
||
|
||
|
||
def build_option(args):
|
||
option = fd.RuntimeOption()
|
||
if args.device.lower() == "kunlunxin":
|
||
option.use_kunlunxin()
|
||
|
||
if args.device.lower() == "ascend":
|
||
option.use_ascend()
|
||
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu()
|
||
|
||
return option
|
||
|
||
|
||
args = parse_arguments()
|
||
|
||
# Detection模型, 检测文字框
|
||
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
|
||
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
|
||
# Classification模型,方向分类,可选
|
||
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
|
||
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
|
||
# Recognition模型,文字识别模型
|
||
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
|
||
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
|
||
rec_label_file = args.rec_label_file
|
||
|
||
# 对于三个模型,均采用同样的部署配置
|
||
# 用户也可根据自行需求分别配置
|
||
runtime_option = build_option(args)
|
||
|
||
det_model = fd.vision.ocr.DBDetector(
|
||
det_model_file, det_params_file, runtime_option=runtime_option)
|
||
cls_model = fd.vision.ocr.Classifier(
|
||
cls_model_file, cls_params_file, runtime_option=runtime_option)
|
||
rec_model = fd.vision.ocr.Recognizer(
|
||
rec_model_file,
|
||
rec_params_file,
|
||
rec_label_file,
|
||
runtime_option=runtime_option)
|
||
|
||
# PPOCR的Rec模型开启静态推理, 其他硬件不需要的话请注释掉.
|
||
rec_model.preprocessor.static_shape = True
|
||
|
||
# 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None
|
||
ppocr_v3 = fd.vision.ocr.PPOCRv3(
|
||
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
|
||
|
||
#####
|
||
#准备输入图片数据
|
||
img_dir = args.image
|
||
imgs_file_lists = []
|
||
if os.path.isdir(img_dir):
|
||
for single_file in os.listdir(img_dir):
|
||
if 'jpg' in single_file:
|
||
file_path = os.path.join(img_dir, single_file)
|
||
if os.path.isfile(file_path):
|
||
imgs_file_lists.append(file_path)
|
||
|
||
imgs_file_lists.sort()
|
||
|
||
fd_result = []
|
||
for idx, image in enumerate(imgs_file_lists):
|
||
img = cv2.imread(image)
|
||
result = ppocr_v3.predict(img)
|
||
for i in range(len(result.boxes)):
|
||
one_res = result.boxes[i] + [
|
||
result.rec_scores[i]
|
||
] + [result.cls_labels[i]] + [result.cls_scores[i]]
|
||
fd_result.append(one_res)
|
||
|
||
local_result = []
|
||
with open('PPOCRv3_ICDAR10_BS116_1221.txt', 'r') as f:
|
||
for line in f:
|
||
local_result.append(list(map(float, line.split(','))))
|
||
|
||
# Begin to Diff Compare
|
||
total_num_res = len(local_result) * 11
|
||
total_diff_num = 0
|
||
|
||
print("==== Begin to check OCR diff ====")
|
||
for list_local, list_fd in zip(local_result, fd_result):
|
||
|
||
for i in range(len(list_local)):
|
||
|
||
if (i < 8):
|
||
#Det
|
||
diff = list_local[i] - list_fd[i]
|
||
assert (
|
||
abs(diff) < 1
|
||
), "Diff exist in Det box result, where is {} - {} .".format(
|
||
list_local, list_fd)
|
||
elif (i == 8):
|
||
#rec
|
||
diff = round(list_local[i], 6) - round(list_fd[i], 6)
|
||
assert (
|
||
abs(diff) < 0.001
|
||
), "Diff exist in rec scores result, where is {} - {} .".format(
|
||
list_local, list_fd)
|
||
elif (i == 9):
|
||
diff = list_local[i] - list_fd[i]
|
||
assert (
|
||
abs(diff) != 1
|
||
), "Diff exist in cls label result, where is {} - {} .".format(
|
||
list_local, list_fd)
|
||
else:
|
||
diff = round(list_local[i], 6) - round(list_fd[i], 6)
|
||
assert (
|
||
abs(diff) < 0.001
|
||
), "Diff exist in cls score result, where is {} - {} .".format(
|
||
list_local, list_fd)
|