Files
FastDeploy/examples/audio/pp-tts/python/stream_play_tts.py
Thomas Young f2c09a87a6 Add tts python example and change onnx to paddle (#420)
* add tts example

* update example

* update use fd engine

* add tts python example

* add readme

* fix comment

* change paddle model

* fix readme style

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-25 10:24:56 +08:00

215 lines
7.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import time
import fastdeploy as fd
import numpy as np
import soundfile as sf
from paddlespeech.server.utils.util import denorm
from paddlespeech.server.utils.util import get_chunks
from paddlespeech.t2s.frontend.zh_frontend import Frontend
model_name_fastspeech2 = "fastspeech2_cnndecoder_csmsc_streaming_static_1.0.0"
model_zip_fastspeech2 = model_name_fastspeech2 + ".zip"
model_url_fastspeech2 = "https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/" + model_zip_fastspeech2
model_name_mb_melgan = "mb_melgan_csmsc_static_0.1.1"
model_zip_mb_melgan = model_name_mb_melgan + ".zip"
model_url_mb_melgan = "https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/" + model_zip_mb_melgan
dir_name = os.path.dirname(os.path.realpath(__file__)) + "/"
if not os.path.exists(model_name_fastspeech2):
if os.path.exists(model_zip_fastspeech2):
os.remove(model_zip_fastspeech2)
fd.download_and_decompress(model_url_fastspeech2, path=dir_name)
os.remove(model_zip_fastspeech2)
if not os.path.exists(model_name_mb_melgan):
if os.path.exists(model_zip_mb_melgan):
os.remove(model_zip_mb_melgan)
fd.download_and_decompress(model_url_mb_melgan, path=dir_name)
os.remove(model_zip_mb_melgan)
voc_block = 36
voc_pad = 14
am_block = 72
am_pad = 12
voc_upsample = 300
# 模型路径
phones_dict = dir_name + model_name_fastspeech2 + "/phone_id_map.txt"
am_stat_path = dir_name + model_name_fastspeech2 + "/speech_stats.npy"
am_encoder_model = dir_name + model_name_fastspeech2 + "/fastspeech2_csmsc_am_encoder_infer.pdmodel"
am_decoder_model = dir_name + model_name_fastspeech2 + "/fastspeech2_csmsc_am_decoder.pdmodel"
am_postnet_model = dir_name + model_name_fastspeech2 + "/fastspeech2_csmsc_am_postnet.pdmodel"
voc_melgan_model = dir_name + model_name_mb_melgan + "/mb_melgan_csmsc.pdmodel"
am_encoder_para = dir_name + model_name_fastspeech2 + "/fastspeech2_csmsc_am_encoder_infer.pdiparams"
am_decoder_para = dir_name + model_name_fastspeech2 + "/fastspeech2_csmsc_am_decoder.pdiparams"
am_postnet_para = dir_name + model_name_fastspeech2 + "/fastspeech2_csmsc_am_postnet.pdiparams"
voc_melgan_para = dir_name + model_name_mb_melgan + "/mb_melgan_csmsc.pdiparams"
frontend = Frontend(phone_vocab_path=phones_dict, tone_vocab_path=None)
am_mu, am_std = np.load(am_stat_path)
option_1 = fd.RuntimeOption()
option_1.set_model_path(am_encoder_model, am_encoder_para)
option_1.use_cpu()
option_1.use_ort_backend()
option_1.set_cpu_thread_num(12)
am_encoder_runtime = fd.Runtime(option_1)
option_2 = fd.RuntimeOption()
option_2.set_model_path(am_decoder_model, am_decoder_para)
option_2.use_cpu()
option_2.use_ort_backend()
option_2.set_cpu_thread_num(12)
am_decoder_runtime = fd.Runtime(option_2)
option_3 = fd.RuntimeOption()
option_3.set_model_path(am_postnet_model, am_postnet_para)
option_3.use_cpu()
option_3.use_ort_backend()
option_3.set_cpu_thread_num(12)
am_postnet_runtime = fd.Runtime(option_3)
option_4 = fd.RuntimeOption()
option_4.set_model_path(voc_melgan_model, voc_melgan_para)
option_4.use_cpu()
option_4.use_ort_backend()
option_4.set_cpu_thread_num(12)
voc_melgan_runtime = fd.Runtime(option_4)
def depadding(data, chunk_num, chunk_id, block, pad, upsample):
"""
Streaming inference removes the result of pad inference
"""
front_pad = min(chunk_id * block, pad)
# first chunk
if chunk_id == 0:
data = data[:block * upsample]
# last chunk
elif chunk_id == chunk_num - 1:
data = data[front_pad * upsample:]
# middle chunk
else:
data = data[front_pad * upsample:(front_pad + block) * upsample]
return data
def inference_stream(text):
input_ids = frontend.get_input_ids(
text, merge_sentences=False, get_tone_ids=False)
phone_ids = input_ids["phone_ids"]
for i in range(len(phone_ids)):
part_phone_ids = phone_ids[i].numpy()
voc_chunk_id = 0
orig_hs = am_encoder_runtime.infer({
'text':
part_phone_ids.astype("int64")
})
orig_hs = orig_hs[0]
# streaming voc chunk info
mel_len = orig_hs.shape[1]
voc_chunk_num = math.ceil(mel_len / voc_block)
start = 0
end = min(voc_block + voc_pad, mel_len)
# streaming am
hss = get_chunks(orig_hs, am_block, am_pad, "am")
am_chunk_num = len(hss)
for i, hs in enumerate(hss):
am_decoder_output = am_decoder_runtime.infer({
'xs':
hs.astype("float32")
})
am_postnet_output = am_postnet_runtime.infer({
'xs':
np.transpose(am_decoder_output[0], (0, 2, 1))
})
am_output_data = am_decoder_output + np.transpose(
am_postnet_output[0], (0, 2, 1))
normalized_mel = am_output_data[0][0]
sub_mel = denorm(normalized_mel, am_mu, am_std)
sub_mel = depadding(sub_mel, am_chunk_num, i, am_block, am_pad, 1)
if i == 0:
mel_streaming = sub_mel
else:
mel_streaming = np.concatenate((mel_streaming, sub_mel), axis=0)
# streaming voc
# 当流式AM推理的mel帧数大于流式voc推理的chunk size开始进行流式voc 推理
while (mel_streaming.shape[0] >= end and
voc_chunk_id < voc_chunk_num):
voc_chunk = mel_streaming[start:end, :]
sub_wav = voc_melgan_runtime.infer({
'logmel':
voc_chunk.astype("float32")
})
sub_wav = depadding(sub_wav[0], voc_chunk_num, voc_chunk_id,
voc_block, voc_pad, voc_upsample)
yield sub_wav
voc_chunk_id += 1
start = max(0, voc_chunk_id * voc_block - voc_pad)
end = min((voc_chunk_id + 1) * voc_block + voc_pad, mel_len)
if __name__ == '__main__':
text = "欢迎使用飞桨语音合成系统,测试一下合成效果。"
# warm up
# onnxruntime 第一次时间会长一些,建议先 warmup 一下
'''
# pyaudio 播放
p = pyaudio.PyAudio()
stream = p.open(
format=p.get_format_from_width(2), # int16
channels=1,
rate=24000,
output=True)
'''
# 计时
wavs = []
t1 = time.time()
for sub_wav in inference_stream(text):
print("响应时间:", time.time() - t1)
t1 = time.time()
wavs.append(sub_wav.flatten())
# float32 to int16
#wav = float2pcm(sub_wav)
# to bytes
#wav_bytes = wav.tobytes()
#stream.write(wav_bytes)
# 关闭 pyaudio 播放器
#stream.stop_stream()
#stream.close()
#p.terminate()
# 流式合成的结果导出
wav = np.concatenate(wavs)
sf.write("demo_stream.wav", data=wav, samplerate=24000)