mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* ppocr cls preprocessor use manager * hwc2chw cvcuda * ppocr rec preproc use manager * ocr rec preproc cvcuda * fix rec preproc bug * ppocr cls&rec preproc set normalize * fix pybind * address comment
143 lines
4.6 KiB
C++
143 lines
4.6 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/ocr/ppocr/rec_preprocessor.h"
|
|
|
|
#include "fastdeploy/function/concat.h"
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace ocr {
|
|
|
|
RecognizerPreprocessor::RecognizerPreprocessor() {
|
|
resize_op_ = std::make_shared<Resize>(-1, -1);
|
|
|
|
std::vector<float> value = {127, 127, 127};
|
|
pad_op_ = std::make_shared<Pad>(0, 0, 0, 0, value);
|
|
|
|
std::vector<float> mean = {0.5f, 0.5f, 0.5f};
|
|
std::vector<float> std = {0.5f, 0.5f, 0.5f};
|
|
normalize_permute_op_ =
|
|
std::make_shared<NormalizeAndPermute>(mean, std, true);
|
|
normalize_op_ = std::make_shared<Normalize>(mean, std, true);
|
|
hwc2chw_op_ = std::make_shared<HWC2CHW>();
|
|
cast_op_ = std::make_shared<Cast>("float");
|
|
}
|
|
|
|
void RecognizerPreprocessor::OcrRecognizerResizeImage(
|
|
FDMat* mat, float max_wh_ratio, const std::vector<int>& rec_image_shape,
|
|
bool static_shape_infer) {
|
|
int img_h, img_w;
|
|
img_h = rec_image_shape[1];
|
|
img_w = rec_image_shape[2];
|
|
|
|
if (!static_shape_infer) {
|
|
img_w = int(img_h * max_wh_ratio);
|
|
float ratio = float(mat->Width()) / float(mat->Height());
|
|
|
|
int resize_w;
|
|
if (ceilf(img_h * ratio) > img_w) {
|
|
resize_w = img_w;
|
|
} else {
|
|
resize_w = int(ceilf(img_h * ratio));
|
|
}
|
|
resize_op_->SetWidthAndHeight(resize_w, img_h);
|
|
(*resize_op_)(mat);
|
|
pad_op_->SetPaddingSize(0, 0, 0, int(img_w - mat->Width()));
|
|
(*pad_op_)(mat);
|
|
} else {
|
|
if (mat->Width() >= img_w) {
|
|
// Reszie W to 320
|
|
resize_op_->SetWidthAndHeight(img_w, img_h);
|
|
(*resize_op_)(mat);
|
|
} else {
|
|
resize_op_->SetWidthAndHeight(mat->Width(), img_h);
|
|
(*resize_op_)(mat);
|
|
// Pad to 320
|
|
pad_op_->SetPaddingSize(0, 0, 0, int(img_w - mat->Width()));
|
|
(*pad_op_)(mat);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RecognizerPreprocessor::Run(std::vector<FDMat>* images,
|
|
std::vector<FDTensor>* outputs,
|
|
size_t start_index, size_t end_index,
|
|
const std::vector<int>& indices) {
|
|
if (images->size() == 0 || end_index <= start_index ||
|
|
end_index > images->size()) {
|
|
FDERROR << "images->size() or index error. Correct is: 0 <= start_index < "
|
|
"end_index <= images->size()"
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
std::vector<FDMat> mats(end_index - start_index);
|
|
for (size_t i = start_index; i < end_index; ++i) {
|
|
size_t real_index = i;
|
|
if (indices.size() != 0) {
|
|
real_index = indices[i];
|
|
}
|
|
mats[i - start_index] = images->at(real_index);
|
|
}
|
|
return Run(&mats, outputs);
|
|
}
|
|
|
|
bool RecognizerPreprocessor::Apply(FDMatBatch* image_batch,
|
|
std::vector<FDTensor>* outputs) {
|
|
int img_h = rec_image_shape_[1];
|
|
int img_w = rec_image_shape_[2];
|
|
float max_wh_ratio = img_w * 1.0 / img_h;
|
|
float ori_wh_ratio;
|
|
|
|
for (size_t i = 0; i < image_batch->mats->size(); ++i) {
|
|
FDMat* mat = &(image_batch->mats->at(i));
|
|
ori_wh_ratio = mat->Width() * 1.0 / mat->Height();
|
|
max_wh_ratio = std::max(max_wh_ratio, ori_wh_ratio);
|
|
}
|
|
|
|
for (size_t i = 0; i < image_batch->mats->size(); ++i) {
|
|
FDMat* mat = &(image_batch->mats->at(i));
|
|
OcrRecognizerResizeImage(mat, max_wh_ratio, rec_image_shape_,
|
|
static_shape_infer_);
|
|
}
|
|
|
|
if (!disable_normalize_ && !disable_permute_) {
|
|
(*normalize_permute_op_)(image_batch);
|
|
} else {
|
|
if (!disable_normalize_) {
|
|
(*normalize_op_)(image_batch);
|
|
}
|
|
if (!disable_permute_) {
|
|
(*hwc2chw_op_)(image_batch);
|
|
(*cast_op_)(image_batch);
|
|
}
|
|
}
|
|
|
|
// Only have 1 output Tensor.
|
|
outputs->resize(1);
|
|
// Get the NCHW tensor
|
|
FDTensor* tensor = image_batch->Tensor();
|
|
(*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
|
|
tensor->Data(), tensor->device,
|
|
tensor->device_id);
|
|
return true;
|
|
}
|
|
|
|
} // namespace ocr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|