Files
FastDeploy/fastdeploy/vision/ocr/ppocr/det_preprocessor.cc
Wang Xinyu 044ab993d2 [CVCUDA] PP-OCR Cls & Rec preprocessor support CV-CUDA (#1470)
* ppocr cls preprocessor use manager

* hwc2chw cvcuda

* ppocr rec preproc use manager

* ocr rec preproc cvcuda

* fix rec preproc bug

* ppocr cls&rec preproc set normalize

* fix pybind

* address comment
2023-03-02 10:50:44 +08:00

107 lines
3.5 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/det_preprocessor.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
std::array<int, 4> DBDetectorPreprocessor::OcrDetectorGetInfo(
FDMat* img, int max_size_len) {
int w = img->Width();
int h = img->Height();
if (static_shape_infer_) {
return {w, h, det_image_shape_[2], det_image_shape_[1]};
}
float ratio = 1.f;
int max_wh = w >= h ? w : h;
if (max_wh > max_size_len) {
if (h > w) {
ratio = float(max_size_len) / float(h);
} else {
ratio = float(max_size_len) / float(w);
}
}
int resize_h = int(float(h) * ratio);
int resize_w = int(float(w) * ratio);
resize_h = std::max(int(std::round(float(resize_h) / 32) * 32), 32);
resize_w = std::max(int(std::round(float(resize_w) / 32) * 32), 32);
return {w, h, resize_w, resize_h};
/*
*ratio_h = float(resize_h) / float(h);
*ratio_w = float(resize_w) / float(w);
*/
}
DBDetectorPreprocessor::DBDetectorPreprocessor() {
resize_op_ = std::make_shared<Resize>(-1, -1);
std::vector<float> value = {0, 0, 0};
pad_op_ = std::make_shared<Pad>(0, 0, 0, 0, value);
normalize_permute_op_ = std::make_shared<NormalizeAndPermute>(
std::vector<float>({0.485f, 0.456f, 0.406f}),
std::vector<float>({0.229f, 0.224f, 0.225f}), true);
}
bool DBDetectorPreprocessor::ResizeImage(FDMat* img, int resize_w, int resize_h,
int max_resize_w, int max_resize_h) {
resize_op_->SetWidthAndHeight(resize_w, resize_h);
(*resize_op_)(img);
pad_op_->SetPaddingSize(0, max_resize_h - resize_h, 0,
max_resize_w - resize_w);
(*pad_op_)(img);
return true;
}
bool DBDetectorPreprocessor::Apply(FDMatBatch* image_batch,
std::vector<FDTensor>* outputs) {
int max_resize_w = 0;
int max_resize_h = 0;
batch_det_img_info_.clear();
batch_det_img_info_.resize(image_batch->mats->size());
for (size_t i = 0; i < image_batch->mats->size(); ++i) {
FDMat* mat = &(image_batch->mats->at(i));
batch_det_img_info_[i] = OcrDetectorGetInfo(mat, max_side_len_);
max_resize_w = std::max(max_resize_w, batch_det_img_info_[i][2]);
max_resize_h = std::max(max_resize_h, batch_det_img_info_[i][3]);
}
for (size_t i = 0; i < image_batch->mats->size(); ++i) {
FDMat* mat = &(image_batch->mats->at(i));
ResizeImage(mat, batch_det_img_info_[i][2], batch_det_img_info_[i][3],
max_resize_w, max_resize_h);
}
if (!disable_normalize_ && !disable_permute_) {
(*normalize_permute_op_)(image_batch);
}
outputs->resize(1);
FDTensor* tensor = image_batch->Tensor();
(*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
tensor->Data(), tensor->device,
tensor->device_id);
return true;
}
} // namespace ocr
} // namespace vision
} // namespace fastdeploy