Files
FastDeploy/fastdeploy/vision/ocr/ppocr/cls_preprocessor.cc
Wang Xinyu 044ab993d2 [CVCUDA] PP-OCR Cls & Rec preprocessor support CV-CUDA (#1470)
* ppocr cls preprocessor use manager

* hwc2chw cvcuda

* ppocr rec preproc use manager

* ocr rec preproc cvcuda

* fix rec preproc bug

* ppocr cls&rec preproc set normalize

* fix pybind

* address comment
2023-03-02 10:50:44 +08:00

103 lines
3.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/cls_preprocessor.h"
#include "fastdeploy/function/concat.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
ClassifierPreprocessor::ClassifierPreprocessor() {
resize_op_ = std::make_shared<Resize>(-1, -1);
std::vector<float> value = {0, 0, 0};
pad_op_ = std::make_shared<Pad>(0, 0, 0, 0, value);
normalize_op_ =
std::make_shared<Normalize>(std::vector<float>({0.5f, 0.5f, 0.5f}),
std::vector<float>({0.5f, 0.5f, 0.5f}), true);
hwc2chw_op_ = std::make_shared<HWC2CHW>();
}
void ClassifierPreprocessor::OcrClassifierResizeImage(
FDMat* mat, const std::vector<int>& cls_image_shape) {
int img_c = cls_image_shape[0];
int img_h = cls_image_shape[1];
int img_w = cls_image_shape[2];
float ratio = float(mat->Width()) / float(mat->Height());
int resize_w;
if (ceilf(img_h * ratio) > img_w)
resize_w = img_w;
else
resize_w = int(ceilf(img_h * ratio));
resize_op_->SetWidthAndHeight(resize_w, img_h);
(*resize_op_)(mat);
}
bool ClassifierPreprocessor::Run(std::vector<FDMat>* images,
std::vector<FDTensor>* outputs,
size_t start_index, size_t end_index) {
if (images->size() == 0 || start_index < 0 || end_index <= start_index ||
end_index > images->size()) {
FDERROR << "images->size() or index error. Correct is: 0 <= start_index < "
"end_index <= images->size()"
<< std::endl;
return false;
}
std::vector<FDMat> mats(end_index - start_index);
for (size_t i = start_index; i < end_index; ++i) {
mats[i - start_index] = images->at(i);
}
return Run(&mats, outputs);
}
bool ClassifierPreprocessor::Apply(FDMatBatch* image_batch,
std::vector<FDTensor>* outputs) {
for (size_t i = 0; i < image_batch->mats->size(); ++i) {
FDMat* mat = &(image_batch->mats->at(i));
OcrClassifierResizeImage(mat, cls_image_shape_);
if (!disable_normalize_) {
(*normalize_op_)(mat);
}
std::vector<float> value = {0, 0, 0};
if (mat->Width() < cls_image_shape_[2]) {
pad_op_->SetPaddingSize(0, 0, 0, cls_image_shape_[2] - mat->Width());
(*pad_op_)(mat);
}
if (!disable_permute_) {
(*hwc2chw_op_)(mat);
}
}
// Only have 1 output tensor.
outputs->resize(1);
// Get the NCHW tensor
FDTensor* tensor = image_batch->Tensor();
(*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
tensor->Data(), tensor->device,
tensor->device_id);
return true;
}
} // namespace ocr
} // namespace vision
} // namespace fastdeploy