mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* ppocr cls preprocessor use manager * hwc2chw cvcuda * ppocr rec preproc use manager * ocr rec preproc cvcuda * fix rec preproc bug * ppocr cls&rec preproc set normalize * fix pybind * address comment
103 lines
3.4 KiB
C++
103 lines
3.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/ocr/ppocr/cls_preprocessor.h"
|
|
|
|
#include "fastdeploy/function/concat.h"
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace ocr {
|
|
|
|
ClassifierPreprocessor::ClassifierPreprocessor() {
|
|
resize_op_ = std::make_shared<Resize>(-1, -1);
|
|
|
|
std::vector<float> value = {0, 0, 0};
|
|
pad_op_ = std::make_shared<Pad>(0, 0, 0, 0, value);
|
|
|
|
normalize_op_ =
|
|
std::make_shared<Normalize>(std::vector<float>({0.5f, 0.5f, 0.5f}),
|
|
std::vector<float>({0.5f, 0.5f, 0.5f}), true);
|
|
hwc2chw_op_ = std::make_shared<HWC2CHW>();
|
|
}
|
|
|
|
void ClassifierPreprocessor::OcrClassifierResizeImage(
|
|
FDMat* mat, const std::vector<int>& cls_image_shape) {
|
|
int img_c = cls_image_shape[0];
|
|
int img_h = cls_image_shape[1];
|
|
int img_w = cls_image_shape[2];
|
|
|
|
float ratio = float(mat->Width()) / float(mat->Height());
|
|
|
|
int resize_w;
|
|
if (ceilf(img_h * ratio) > img_w)
|
|
resize_w = img_w;
|
|
else
|
|
resize_w = int(ceilf(img_h * ratio));
|
|
|
|
resize_op_->SetWidthAndHeight(resize_w, img_h);
|
|
(*resize_op_)(mat);
|
|
}
|
|
|
|
bool ClassifierPreprocessor::Run(std::vector<FDMat>* images,
|
|
std::vector<FDTensor>* outputs,
|
|
size_t start_index, size_t end_index) {
|
|
if (images->size() == 0 || start_index < 0 || end_index <= start_index ||
|
|
end_index > images->size()) {
|
|
FDERROR << "images->size() or index error. Correct is: 0 <= start_index < "
|
|
"end_index <= images->size()"
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
std::vector<FDMat> mats(end_index - start_index);
|
|
for (size_t i = start_index; i < end_index; ++i) {
|
|
mats[i - start_index] = images->at(i);
|
|
}
|
|
return Run(&mats, outputs);
|
|
}
|
|
|
|
bool ClassifierPreprocessor::Apply(FDMatBatch* image_batch,
|
|
std::vector<FDTensor>* outputs) {
|
|
for (size_t i = 0; i < image_batch->mats->size(); ++i) {
|
|
FDMat* mat = &(image_batch->mats->at(i));
|
|
OcrClassifierResizeImage(mat, cls_image_shape_);
|
|
if (!disable_normalize_) {
|
|
(*normalize_op_)(mat);
|
|
}
|
|
std::vector<float> value = {0, 0, 0};
|
|
if (mat->Width() < cls_image_shape_[2]) {
|
|
pad_op_->SetPaddingSize(0, 0, 0, cls_image_shape_[2] - mat->Width());
|
|
(*pad_op_)(mat);
|
|
}
|
|
if (!disable_permute_) {
|
|
(*hwc2chw_op_)(mat);
|
|
}
|
|
}
|
|
// Only have 1 output tensor.
|
|
outputs->resize(1);
|
|
// Get the NCHW tensor
|
|
FDTensor* tensor = image_batch->Tensor();
|
|
(*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
|
|
tensor->Data(), tensor->device,
|
|
tensor->device_id);
|
|
return true;
|
|
}
|
|
|
|
} // namespace ocr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|