Files
FastDeploy/fastdeploy/vision/common/processors/manager.cc
Wang Xinyu 044ab993d2 [CVCUDA] PP-OCR Cls & Rec preprocessor support CV-CUDA (#1470)
* ppocr cls preprocessor use manager

* hwc2chw cvcuda

* ppocr rec preproc use manager

* ocr rec preproc cvcuda

* fix rec preproc bug

* ppocr cls&rec preproc set normalize

* fix pybind

* address comment
2023-03-02 10:50:44 +08:00

99 lines
3.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/common/processors/manager.h"
namespace fastdeploy {
namespace vision {
ProcessorManager::~ProcessorManager() {
#ifdef WITH_GPU
if (stream_) cudaStreamDestroy(stream_);
#endif
}
void ProcessorManager::UseCuda(bool enable_cv_cuda, int gpu_id) {
#ifdef WITH_GPU
if (gpu_id >= 0) {
device_id_ = gpu_id;
FDASSERT(cudaSetDevice(device_id_) == cudaSuccess,
"[ERROR] Error occurs while setting cuda device.");
}
FDASSERT(cudaStreamCreate(&stream_) == cudaSuccess,
"[ERROR] Error occurs while creating cuda stream.");
proc_lib_ = ProcLib::CUDA;
#else
FDASSERT(false, "FastDeploy didn't compile with WITH_GPU.");
#endif
if (enable_cv_cuda) {
#ifdef ENABLE_CVCUDA
proc_lib_ = ProcLib::CVCUDA;
#else
FDASSERT(false, "FastDeploy didn't compile with CV-CUDA.");
#endif
}
}
bool ProcessorManager::CudaUsed() {
return (proc_lib_ == ProcLib::CUDA || proc_lib_ == ProcLib::CVCUDA);
}
bool ProcessorManager::Run(std::vector<FDMat>* images,
std::vector<FDTensor>* outputs) {
if (images->size() == 0) {
FDERROR << "The size of input images should be greater than 0."
<< std::endl;
return false;
}
if (images->size() > input_caches_.size()) {
input_caches_.resize(images->size());
output_caches_.resize(images->size());
}
FDMatBatch image_batch(images);
image_batch.input_cache = &batch_input_cache_;
image_batch.output_cache = &batch_output_cache_;
image_batch.proc_lib = proc_lib_;
for (size_t i = 0; i < images->size(); ++i) {
if (CudaUsed()) {
SetStream(&image_batch);
}
(*images)[i].input_cache = &input_caches_[i];
(*images)[i].output_cache = &output_caches_[i];
(*images)[i].proc_lib = proc_lib_;
if ((*images)[i].mat_type == ProcLib::CUDA) {
// Make a copy of the input data ptr, so that the original data ptr of
// FDMat won't be modified.
auto fd_tensor = std::make_shared<FDTensor>();
fd_tensor->SetExternalData(
(*images)[i].Tensor()->shape, (*images)[i].Tensor()->Dtype(),
(*images)[i].Tensor()->Data(), (*images)[i].Tensor()->device,
(*images)[i].Tensor()->device_id);
(*images)[i].SetTensor(fd_tensor);
}
}
bool ret = Apply(&image_batch, outputs);
if (CudaUsed()) {
SyncStream();
}
return ret;
}
} // namespace vision
} // namespace fastdeploy