mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Add sort function * Add isfinite function * upgrade isinf isnan * Add Scalar to FDTensor * Add floor, ceil function * add cast functions * Update out_tmp * Update quantile * add gather scatter along axis * finish quantile function * Add quantile unittest * refresh code style for test source code * Add comments * Add full function * Add scalar to fd tensor * Add full unittest * Add functions headers * move fdtensor operators to fastdeploy namespace
126 lines
4.4 KiB
C++
126 lines
4.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/function/gather_scatter_along_axis.h"
|
|
#include "fastdeploy/function/tile.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace function {
|
|
|
|
class TensorAssign {
|
|
public:
|
|
template <typename tensor_t>
|
|
void operator()(tensor_t* self_data, tensor_t* src_data) const {
|
|
*self_data = *src_data;
|
|
}
|
|
};
|
|
static TensorAssign tensor_assign;
|
|
|
|
template <typename T, typename index_t = int64_t, bool is_scatter_like = true>
|
|
struct GatherScatterFunctor {
|
|
template <typename func_t>
|
|
void operator()(const FDTensor& x, int axis, const FDTensor& index,
|
|
FDTensor* result, const func_t& reduce_op) {
|
|
if (index.Numel() == 0) {
|
|
return;
|
|
}
|
|
result->Allocate(index.Shape(), x.Dtype());
|
|
const T* x_data = reinterpret_cast<const T*>(x.Data());
|
|
const index_t* index_data = reinterpret_cast<const index_t*>(index.Data());
|
|
T* result_data = reinterpret_cast<T*>(result->Data());
|
|
|
|
int64_t x_size = x.Numel();
|
|
int64_t index_size = index.Numel();
|
|
int64_t result_size = result->Numel();
|
|
auto x_dims = x.Shape();
|
|
auto index_dims = index.Shape();
|
|
auto result_dims = result->Shape();
|
|
if (x_size == 0 || result_size == 0 || index_size == 0) {
|
|
FDASSERT(false, "zero size input found, self_size, result_size, "
|
|
"index_size cannot be 0");
|
|
return;
|
|
}
|
|
int select_dim_size = index_dims[axis];
|
|
// index matrix has different shape with self matrix or src matrix.
|
|
int replaced_select_dim_size =
|
|
is_scatter_like ? result_dims[axis] : x_dims[axis];
|
|
int64_t inner_dim_size = 1;
|
|
int64_t outer_dim_size = 1;
|
|
for (int64_t i = 0; i < axis; ++i) {
|
|
inner_dim_size *= index_dims[i];
|
|
}
|
|
|
|
for (int i = axis + 1; i < index_dims.size(); i++) {
|
|
outer_dim_size *= index_dims[i];
|
|
}
|
|
int64_t index_idx = 0;
|
|
int64_t self_idx, src_idx;
|
|
// N layer loop squeezed into 3 layers loop
|
|
for (int64_t i = 0; i < inner_dim_size; i++) {
|
|
for (int64_t j = 0; j < select_dim_size; j++) {
|
|
for (int64_t k = 0; k < outer_dim_size; k++) {
|
|
int64_t index = index_data[index_idx];
|
|
// This index might out of bound of index matrix's index, so here
|
|
// multiply the replaced_select_dim_size.
|
|
int64_t replace_index = k + index * outer_dim_size +
|
|
i * outer_dim_size * replaced_select_dim_size;
|
|
|
|
self_idx = is_scatter_like ? replace_index : index_idx;
|
|
src_idx = is_scatter_like ? index_idx : replace_index;
|
|
|
|
reduce_op((T*)(result_data + self_idx), // NOLINT
|
|
(T*)(x_data + src_idx)); // NOLINT
|
|
|
|
index_idx++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T> struct GatherFunctor {
|
|
void operator()(const FDTensor& x, int axis, const FDTensor& index,
|
|
FDTensor* result) {
|
|
FD_VISIT_INT_TYPES(index.Dtype(), "GatherFunctor", [&]() {
|
|
auto x_shape = x.Shape();
|
|
auto index_shape = index.Shape();
|
|
std::vector<int64_t> repeat_times(x_shape.size(), 1);
|
|
for (int i = 0; i < x_shape.size(); ++i) {
|
|
repeat_times[i] = x_shape[i] / index_shape[i];
|
|
}
|
|
repeat_times[axis] = 1;
|
|
FDTensor gs_index;
|
|
Tile(index, repeat_times, &gs_index);
|
|
GatherScatterFunctor<T, data_t, /*is_scatter_like=*/false>()(
|
|
x, axis, gs_index, result, tensor_assign);
|
|
});
|
|
}
|
|
};
|
|
|
|
void GatherAlongAxis(const FDTensor& x, const FDTensor& index, FDTensor* result,
|
|
int axis) {
|
|
int rank = x.Shape().size();
|
|
FDASSERT(axis >= -rank && axis < rank,
|
|
"axis should be in range [-%d, %d - 1].", rank, rank - 1);
|
|
if (axis < 0) {
|
|
axis += rank;
|
|
}
|
|
FD_VISIT_ALL_TYPES(x.Dtype(), "GatherAlongAxis", [&]() {
|
|
GatherFunctor<data_t>()(x, axis, index, result);
|
|
});
|
|
}
|
|
|
|
} // namespace function
|
|
} // namespace fastdeploy
|