mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 d259952224
			
		
	
	d259952224
	
	
	
		
			
			* add paddle_trt in benchmark * update benchmark in device * update benchmark * update result doc * fixed for CI * update python api_docs * update index.rst * add runtime cpp examples * deal with comments * Update infer_paddle_tensorrt.py * Add runtime quick start * deal with comments * fixed reused_input_tensors&&reused_output_tensors Co-authored-by: Jason <928090362@qq.com>
		
			
				
	
	
		
			323 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			323 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/detection/contrib/yolox.h"
 | |
| #include "fastdeploy/utils/perf.h"
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| 
 | |
| namespace vision {
 | |
| 
 | |
| namespace detection {
 | |
| 
 | |
| struct YOLOXAnchor {
 | |
|   int grid0;
 | |
|   int grid1;
 | |
|   int stride;
 | |
| };
 | |
| 
 | |
| void GenerateYOLOXAnchors(const std::vector<int>& size,
 | |
|                           const std::vector<int>& downsample_strides,
 | |
|                           std::vector<YOLOXAnchor>* anchors) {
 | |
|   // size: tuple of input (width, height)
 | |
|   // downsample_strides: downsample strides in YOLOX, e.g (8,16,32)
 | |
|   const int width = size[0];
 | |
|   const int height = size[1];
 | |
|   for (const auto& ds : downsample_strides) {
 | |
|     int num_grid_w = width / ds;
 | |
|     int num_grid_h = height / ds;
 | |
|     for (int g1 = 0; g1 < num_grid_h; ++g1) {
 | |
|       for (int g0 = 0; g0 < num_grid_w; ++g0) {
 | |
|         (*anchors).emplace_back(YOLOXAnchor{g0, g1, ds});
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LetterBoxWithRightBottomPad(Mat* mat, std::vector<int> size,
 | |
|                                  std::vector<float> color) {
 | |
|   // specific pre process for YOLOX, not the same as YOLOv5
 | |
|   // reference: YOLOX/yolox/data/data_augment.py#L142
 | |
|   float r = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
 | |
|                      size[0] * 1.0f / static_cast<float>(mat->Width()));
 | |
| 
 | |
|   int resize_h = int(round(static_cast<float>(mat->Height()) * r));
 | |
|   int resize_w = int(round(static_cast<float>(mat->Width()) * r));
 | |
| 
 | |
|   if (resize_h != mat->Height() || resize_w != mat->Width()) {
 | |
|     Resize::Run(mat, resize_w, resize_h);
 | |
|   }
 | |
| 
 | |
|   int pad_w = size[0] - resize_w;
 | |
|   int pad_h = size[1] - resize_h;
 | |
|   // right-bottom padding for YOLOX
 | |
|   if (pad_h > 0 || pad_w > 0) {
 | |
|     int top = 0;
 | |
|     int left = 0;
 | |
|     int right = pad_w;
 | |
|     int bottom = pad_h;
 | |
|     Pad::Run(mat, top, bottom, left, right, color);
 | |
|   }
 | |
| }
 | |
| 
 | |
| YOLOX::YOLOX(const std::string& model_file, const std::string& params_file,
 | |
|              const RuntimeOption& custom_option,
 | |
|              const ModelFormat& model_format) {
 | |
|   if (model_format == ModelFormat::ONNX) {
 | |
|     valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
 | |
|     valid_gpu_backends = {Backend::ORT, Backend::TRT};
 | |
|   } else {
 | |
|     valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
 | |
|     valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
 | |
|   }
 | |
|   runtime_option = custom_option;
 | |
|   runtime_option.model_format = model_format;
 | |
|   runtime_option.model_file = model_file;
 | |
|   runtime_option.params_file = params_file;
 | |
|   initialized = Initialize();
 | |
| }
 | |
| 
 | |
| bool YOLOX::Initialize() {
 | |
|   // parameters for preprocess
 | |
|   size = {640, 640};
 | |
|   padding_value = {114.0, 114.0, 114.0};
 | |
|   downsample_strides = {8, 16, 32};
 | |
|   max_wh = 4096.0f;
 | |
|   is_decode_exported = false;
 | |
|   reused_input_tensors_.resize(1);
 | |
| 
 | |
|   if (!InitRuntime()) {
 | |
|     FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   // Check if the input shape is dynamic after Runtime already initialized.
 | |
|   is_dynamic_input_ = false;
 | |
|   auto shape = InputInfoOfRuntime(0).shape;
 | |
|   for (int i = 0; i < shape.size(); ++i) {
 | |
|     // if height or width is dynamic
 | |
|     if (i >= 2 && shape[i] <= 0) {
 | |
|       is_dynamic_input_ = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool YOLOX::Preprocess(Mat* mat, FDTensor* output,
 | |
|                        std::map<std::string, std::array<float, 2>>* im_info) {
 | |
|   // YOLOX ( >= v0.1.1) preprocess steps
 | |
|   // 1. preproc
 | |
|   // 2. HWC->CHW
 | |
|   // 3. NO!!! BRG2GRB and Normalize needed in YOLOX
 | |
|   LetterBoxWithRightBottomPad(mat, size, padding_value);
 | |
|   // Record output shape of preprocessed image
 | |
|   (*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
 | |
|                                 static_cast<float>(mat->Width())};
 | |
| 
 | |
|   HWC2CHW::Run(mat);
 | |
|   Cast::Run(mat, "float");
 | |
|   mat->ShareWithTensor(output);
 | |
|   output->shape.insert(output->shape.begin(), 1);  // reshape to n, h, w, c
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool YOLOX::Postprocess(
 | |
|     FDTensor& infer_result, DetectionResult* result,
 | |
|     const std::map<std::string, std::array<float, 2>>& im_info,
 | |
|     float conf_threshold, float nms_iou_threshold) {
 | |
|   FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
 | |
|   result->Clear();
 | |
|   result->Reserve(infer_result.shape[1]);
 | |
|   if (infer_result.dtype != FDDataType::FP32) {
 | |
|     FDERROR << "Only support post process with float32 data." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   float* data = static_cast<float*>(infer_result.Data());
 | |
|   for (size_t i = 0; i < infer_result.shape[1]; ++i) {
 | |
|     int s = i * infer_result.shape[2];
 | |
|     float confidence = data[s + 4];
 | |
|     float* max_class_score =
 | |
|         std::max_element(data + s + 5, data + s + infer_result.shape[2]);
 | |
|     confidence *= (*max_class_score);
 | |
|     // filter boxes by conf_threshold
 | |
|     if (confidence <= conf_threshold) {
 | |
|       continue;
 | |
|     }
 | |
|     int32_t label_id = std::distance(data + s + 5, max_class_score);
 | |
|     // convert from [x, y, w, h] to [x1, y1, x2, y2]
 | |
|     result->boxes.emplace_back(std::array<float, 4>{
 | |
|         data[s] - data[s + 2] / 2.0f + label_id * max_wh,
 | |
|         data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh,
 | |
|         data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh,
 | |
|         data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh});
 | |
|     result->label_ids.push_back(label_id);
 | |
|     result->scores.push_back(confidence);
 | |
|   }
 | |
|   utils::NMS(result, nms_iou_threshold);
 | |
| 
 | |
|   // scale the boxes to the origin image shape
 | |
|   auto iter_out = im_info.find("output_shape");
 | |
|   auto iter_ipt = im_info.find("input_shape");
 | |
|   FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
 | |
|            "Cannot find input_shape or output_shape from im_info.");
 | |
|   float out_h = iter_out->second[0];
 | |
|   float out_w = iter_out->second[1];
 | |
|   float ipt_h = iter_ipt->second[0];
 | |
|   float ipt_w = iter_ipt->second[1];
 | |
|   float r = std::min(out_h / ipt_h, out_w / ipt_w);
 | |
|   for (size_t i = 0; i < result->boxes.size(); ++i) {
 | |
|     int32_t label_id = (result->label_ids)[i];
 | |
|     // clip box
 | |
|     result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
 | |
|     result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
 | |
|     result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
 | |
|     result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
 | |
|     result->boxes[i][0] = std::max(result->boxes[i][0] / r, 0.0f);
 | |
|     result->boxes[i][1] = std::max(result->boxes[i][1] / r, 0.0f);
 | |
|     result->boxes[i][2] = std::max(result->boxes[i][2] / r, 0.0f);
 | |
|     result->boxes[i][3] = std::max(result->boxes[i][3] / r, 0.0f);
 | |
|     result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
 | |
|     result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
 | |
|     result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
 | |
|     result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool YOLOX::PostprocessWithDecode(
 | |
|     FDTensor& infer_result, DetectionResult* result,
 | |
|     const std::map<std::string, std::array<float, 2>>& im_info,
 | |
|     float conf_threshold, float nms_iou_threshold) {
 | |
|   FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
 | |
|   result->Clear();
 | |
|   result->Reserve(infer_result.shape[1]);
 | |
|   if (infer_result.dtype != FDDataType::FP32) {
 | |
|     FDERROR << "Only support post process with float32 data." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   // generate anchors with dowmsample strides
 | |
|   std::vector<YOLOXAnchor> anchors;
 | |
|   GenerateYOLOXAnchors(size, downsample_strides, &anchors);
 | |
| 
 | |
|   // infer_result shape might look like (1,n,85=5+80)
 | |
|   float* data = static_cast<float*>(infer_result.Data());
 | |
|   for (size_t i = 0; i < infer_result.shape[1]; ++i) {
 | |
|     int s = i * infer_result.shape[2];
 | |
|     float confidence = data[s + 4];
 | |
|     float* max_class_score =
 | |
|         std::max_element(data + s + 5, data + s + infer_result.shape[2]);
 | |
|     confidence *= (*max_class_score);
 | |
|     // filter boxes by conf_threshold
 | |
|     if (confidence <= conf_threshold) {
 | |
|       continue;
 | |
|     }
 | |
|     int32_t label_id = std::distance(data + s + 5, max_class_score);
 | |
|     // fetch i-th anchor
 | |
|     float grid0 = static_cast<float>(anchors.at(i).grid0);
 | |
|     float grid1 = static_cast<float>(anchors.at(i).grid1);
 | |
|     float downsample_stride = static_cast<float>(anchors.at(i).stride);
 | |
|     // convert from offsets to [x, y, w, h]
 | |
|     float dx = data[s];
 | |
|     float dy = data[s + 1];
 | |
|     float dw = data[s + 2];
 | |
|     float dh = data[s + 3];
 | |
| 
 | |
|     float x = (dx + grid0) * downsample_stride;
 | |
|     float y = (dy + grid1) * downsample_stride;
 | |
|     float w = std::exp(dw) * downsample_stride;
 | |
|     float h = std::exp(dh) * downsample_stride;
 | |
| 
 | |
|     // convert from [x, y, w, h] to [x1, y1, x2, y2]
 | |
|     result->boxes.emplace_back(std::array<float, 4>{
 | |
|         x - w / 2.0f + label_id * max_wh, y - h / 2.0f + label_id * max_wh,
 | |
|         x + w / 2.0f + label_id * max_wh, y + h / 2.0f + label_id * max_wh});
 | |
|     // label_id * max_wh for multi classes NMS
 | |
|     result->label_ids.push_back(label_id);
 | |
|     result->scores.push_back(confidence);
 | |
|   }
 | |
|   utils::NMS(result, nms_iou_threshold);
 | |
| 
 | |
|   // scale the boxes to the origin image shape
 | |
|   auto iter_out = im_info.find("output_shape");
 | |
|   auto iter_ipt = im_info.find("input_shape");
 | |
|   FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
 | |
|            "Cannot find input_shape or output_shape from im_info.");
 | |
|   float out_h = iter_out->second[0];
 | |
|   float out_w = iter_out->second[1];
 | |
|   float ipt_h = iter_ipt->second[0];
 | |
|   float ipt_w = iter_ipt->second[1];
 | |
|   float r = std::min(out_h / ipt_h, out_w / ipt_w);
 | |
|   for (size_t i = 0; i < result->boxes.size(); ++i) {
 | |
|     int32_t label_id = (result->label_ids)[i];
 | |
|     // clip box
 | |
|     result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
 | |
|     result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
 | |
|     result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
 | |
|     result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
 | |
|     result->boxes[i][0] = std::max(result->boxes[i][0] / r, 0.0f);
 | |
|     result->boxes[i][1] = std::max(result->boxes[i][1] / r, 0.0f);
 | |
|     result->boxes[i][2] = std::max(result->boxes[i][2] / r, 0.0f);
 | |
|     result->boxes[i][3] = std::max(result->boxes[i][3] / r, 0.0f);
 | |
|     result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
 | |
|     result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
 | |
|     result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
 | |
|     result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool YOLOX::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
 | |
|                     float nms_iou_threshold) {
 | |
|   Mat mat(*im);
 | |
| 
 | |
|   std::map<std::string, std::array<float, 2>> im_info;
 | |
| 
 | |
|   // Record the shape of image and the shape of preprocessed image
 | |
|   im_info["input_shape"] = {static_cast<float>(mat.Height()),
 | |
|                             static_cast<float>(mat.Width())};
 | |
|   im_info["output_shape"] = {static_cast<float>(mat.Height()),
 | |
|                              static_cast<float>(mat.Width())};
 | |
| 
 | |
|   if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
 | |
|     FDERROR << "Failed to preprocess input image." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
 | |
|   if (!Infer()) {
 | |
|     FDERROR << "Failed to inference." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (is_decode_exported) {
 | |
|     if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold,
 | |
|                      nms_iou_threshold)) {
 | |
|       FDERROR << "Failed to post process." << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     if (!PostprocessWithDecode(reused_output_tensors_[0], result, im_info,
 | |
|                                conf_threshold, nms_iou_threshold)) {
 | |
|       FDERROR << "Failed to post process." << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace detection
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |