mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	 aa21272eaa
			
		
	
	aa21272eaa
	
	
	
		
			
			* add paddle_trt in benchmark * update benchmark in device * update benchmark * update result doc * fixed for CI * update python api_docs * update index.rst * add runtime cpp examples * deal with comments * Update infer_paddle_tensorrt.py * Add runtime quick start * deal with comments * fixed reused_input_tensors&&reused_output_tensors * fixed docs * fixed headpose typo * fixed typo * refactor yolov5 * update model infer * refactor pybind for yolov5 * rm origin yolov5 * fixed bugs * rm cuda preprocess * fixed bugs * fixed bugs * fixed bug * fixed bug * fix pybind * rm useless code * add convert_and_permute * fixed bugs * fixed im_info for bs_predict * fixed bug * add bs_predict for yolov5 * Add runtime test and batch eval * deal with comments * fixed bug * update testcase * fixed batch eval bug * fixed preprocess bug Co-authored-by: Jason <928090362@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			89 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.  //NOLINT
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "fastdeploy/fastdeploy_model.h"
 | |
| #include "fastdeploy/vision/detection/contrib/yolov5/preprocessor.h"
 | |
| #include "fastdeploy/vision/detection/contrib/yolov5/postprocessor.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace detection {
 | |
| /*! @brief YOLOv5 model object used when to load a YOLOv5 model exported by YOLOv5.
 | |
|  */
 | |
| class FASTDEPLOY_DECL YOLOv5 : public FastDeployModel {
 | |
|  public:
 | |
|   /** \brief  Set path of model file and the configuration of runtime.
 | |
|    *
 | |
|    * \param[in] model_file Path of model file, e.g ./yolov5.onnx
 | |
|    * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
 | |
|    * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
 | |
|    * \param[in] model_format Model format of the loaded model, default is ONNX format
 | |
|    */
 | |
|   YOLOv5(const std::string& model_file, const std::string& params_file = "",
 | |
|          const RuntimeOption& custom_option = RuntimeOption(),
 | |
|          const ModelFormat& model_format = ModelFormat::ONNX);
 | |
| 
 | |
|   std::string ModelName() const { return "yolov5"; }
 | |
| 
 | |
|   /** \brief DEPRECATED Predict the detection result for an input image, remove at 1.0 version
 | |
|    *
 | |
|    * \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
 | |
|    * \param[in] result The output detection result will be writen to this structure
 | |
|    * \param[in] conf_threshold confidence threashold for postprocessing, default is 0.25
 | |
|    * \param[in] nms_threshold iou threashold for NMS, default is 0.5
 | |
|    * \return true if the prediction successed, otherwise false
 | |
|    */
 | |
|   virtual bool Predict(cv::Mat* im, DetectionResult* result,
 | |
|                        float conf_threshold = 0.25,
 | |
|                        float nms_threshold = 0.5);
 | |
| 
 | |
|   /** \brief Predict the detection result for an input image
 | |
|    *
 | |
|    * \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
 | |
|    * \param[in] result The output detection result will be writen to this structure
 | |
|    * \return true if the prediction successed, otherwise false
 | |
|    */
 | |
|   virtual bool Predict(const cv::Mat& img, DetectionResult* result);
 | |
| 
 | |
|   /** \brief Predict the detection results for a batch of input images
 | |
|    *
 | |
|    * \param[in] imgs, The input image list, each element comes from cv::imread()
 | |
|    * \param[in] results The output detection result list
 | |
|    * \return true if the prediction successed, otherwise false
 | |
|    */
 | |
|   virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
 | |
|                             std::vector<DetectionResult>* results);
 | |
| 
 | |
|   /// Get preprocessor reference of YOLOv5
 | |
|   virtual YOLOv5Preprocessor& GetPreprocessor() {
 | |
|     return preprocessor_;
 | |
|   }
 | |
| 
 | |
|   /// Get postprocessor reference of YOLOv5
 | |
|   virtual YOLOv5Postprocessor& GetPostprocessor() {
 | |
|     return postprocessor_;
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   bool Initialize();
 | |
|   YOLOv5Preprocessor preprocessor_;
 | |
|   YOLOv5Postprocessor postprocessor_;
 | |
| };
 | |
| 
 | |
| }  // namespace detection
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |