mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			340 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			340 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| from functools import partial
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| from paddleformers.transformers import PretrainedModel
 | |
| from paddleformers.utils.log import logger
 | |
| 
 | |
| from fastdeploy.config import FDConfig
 | |
| from fastdeploy.model_executor.forward_meta import ForwardMeta
 | |
| from fastdeploy.model_executor.graph_optimization.decorator import (
 | |
|     support_graph_optimization,
 | |
| )
 | |
| from fastdeploy.model_executor.layers.attention.attention import Attention
 | |
| from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
 | |
| from fastdeploy.model_executor.layers.linear import QKVParallelLinear, RowParallelLinear
 | |
| from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
 | |
| from fastdeploy.model_executor.layers.normalization import RMSNorm
 | |
| from fastdeploy.model_executor.models.model_base import ModelForCasualLM
 | |
| from fastdeploy.model_executor.models.qwen2 import Qwen2DecoderLayer, Qwen2MLP
 | |
| 
 | |
| 
 | |
| class Qwen3MLP(Qwen2MLP):
 | |
|     """ """
 | |
| 
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class Qwen3Attention(nn.Layer):
 | |
|     """ """
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig, layer_id: int, prefix: str = "") -> None:
 | |
|         super().__init__()
 | |
| 
 | |
|         self.fd_config = fd_config
 | |
|         self.head_dim = fd_config.model_config.head_dim
 | |
| 
 | |
|         self.qkv_proj = QKVParallelLinear(fd_config, prefix=f"{prefix}.qkv_proj", with_bias=False)
 | |
|         nranks = fd_config.parallel_config.tensor_parallel_size
 | |
| 
 | |
|         self.o_proj = RowParallelLinear(
 | |
|             fd_config,
 | |
|             prefix=f"{prefix}.o_proj",
 | |
|             input_size=fd_config.model_config.head_dim * fd_config.model_config.num_attention_heads,
 | |
|             output_size=fd_config.model_config.hidden_size,
 | |
|         )
 | |
| 
 | |
|         self.attn = Attention(
 | |
|             fd_config,
 | |
|             layer_id=layer_id,
 | |
|             prefix=prefix,
 | |
|             use_neox_rotary_style=True,
 | |
|         )
 | |
| 
 | |
|         self.q_norm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=self.head_dim,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix=f"{prefix}.q_norm",
 | |
|             begin_norm_axis=2,
 | |
|         )
 | |
|         self.k_norm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=self.head_dim,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix=f"{prefix}.k_norm",
 | |
|             begin_norm_axis=2,
 | |
|         )
 | |
| 
 | |
|         nranks = fd_config.parallel_config.tensor_parallel_size
 | |
|         num_kv_heads_replicas = max(1, nranks // fd_config.model_config.num_key_value_heads)
 | |
|         self.q_size = fd_config.model_config.num_attention_heads * self.head_dim // nranks
 | |
|         self.kv_size = fd_config.model_config.num_key_value_heads * self.head_dim * num_kv_heads_replicas // nranks
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """ """
 | |
|         self.qkv_proj.load_state_dict(state_dict)
 | |
|         self.o_proj.load_state_dict(state_dict)
 | |
|         self.q_norm.load_state_dict(state_dict)
 | |
|         self.k_norm.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         forward_meta: ForwardMeta,
 | |
|         hidden_states: paddle.Tensor,
 | |
|     ):
 | |
|         """ """
 | |
|         qkv_out = self.qkv_proj(hidden_states)
 | |
|         # origin_qkv_out = qkv_out
 | |
|         q, k, v = qkv_out.split([self.q_size, self.kv_size, self.kv_size], axis=-1)
 | |
| 
 | |
|         q_by_head = q.reshape([*q.shape[:-1], q.shape[-1] // self.head_dim, self.head_dim])
 | |
|         q_by_head = self.q_norm(q_by_head)
 | |
|         q = q_by_head.reshape(q.shape)
 | |
| 
 | |
|         k_by_head = k.reshape([*k.shape[:-1], k.shape[-1] // self.head_dim, self.head_dim])
 | |
|         k_by_head = self.k_norm(k_by_head)
 | |
|         k = k_by_head.reshape(k.shape)
 | |
| 
 | |
|         qkv_out = paddle.concat([q, k, v], axis=-1)
 | |
| 
 | |
|         atten_out = self.attn(
 | |
|             qkv=qkv_out,
 | |
|             forward_meta=forward_meta,
 | |
|         )
 | |
|         output = self.o_proj(atten_out)
 | |
|         return output
 | |
| 
 | |
| 
 | |
| class Qwen3DecoderLayer(Qwen2DecoderLayer):
 | |
|     """ """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         prefix: str = "",
 | |
|     ) -> None:
 | |
|         super().__init__(fd_config, prefix)
 | |
|         layer_id = int(prefix.split(sep=".")[-1])
 | |
|         self.self_attn = Qwen3Attention(fd_config=fd_config, layer_id=layer_id, prefix=f"{prefix}.self_attn")
 | |
| 
 | |
| 
 | |
| @support_graph_optimization
 | |
| class Qwen3Model(nn.Layer):
 | |
|     """ """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig = None,
 | |
|     ):
 | |
|         """
 | |
|         Initializer for the Qwen3Model class.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         """
 | |
|         super().__init__()
 | |
| 
 | |
|         self.num_layers = fd_config.model_config.num_hidden_layers
 | |
|         fd_config.model_config.pretrained_config.prefix_name = "model"
 | |
| 
 | |
|         self.embed_tokens = VocabParallelEmbedding(
 | |
|             fd_config=fd_config,
 | |
|             num_embeddings=fd_config.model_config.vocab_size,
 | |
|             embedding_dim=fd_config.model_config.hidden_size,
 | |
|             params_dtype=paddle.get_default_dtype,
 | |
|             prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
 | |
|         )
 | |
| 
 | |
|         self.layers = nn.LayerList(
 | |
|             [
 | |
|                 Qwen3DecoderLayer(
 | |
|                     fd_config=fd_config,
 | |
|                     prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}",
 | |
|                 )
 | |
|                 for i in range(self.num_layers)
 | |
|             ]
 | |
|         )
 | |
| 
 | |
|         self.norm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         self.embed_tokens.load_state_dict(state_dict)
 | |
|         self.norm.load_state_dict(state_dict)
 | |
|         for i in range(self.num_layers):
 | |
|             logger.info(f"Start load layer {i}")
 | |
|             self.layers[i].load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         """ """
 | |
|         hidden_states = self.embed_tokens(ids_remove_padding=ids_remove_padding)
 | |
| 
 | |
|         residual = None
 | |
| 
 | |
|         for i in range(self.num_layers):
 | |
|             hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual)
 | |
| 
 | |
|         hidden_states = hidden_states + residual
 | |
| 
 | |
|         out = self.norm(hidden_states)
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class Qwen3ForCausalLM(ModelForCasualLM):
 | |
|     """
 | |
|     Qwen3ForCausalLM
 | |
|     """
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig):
 | |
|         """
 | |
|         Args:
 | |
|             fd_config (FDConfig): Configurations for the LLM model.
 | |
|         """
 | |
|         super(Qwen3ForCausalLM, self).__init__(fd_config)
 | |
| 
 | |
|         self.model = Qwen3Model(fd_config=fd_config)
 | |
| 
 | |
|         self.ori_vocab_size = fd_config.model_config.ori_vocab_size
 | |
|         self.tie_word_embeddings = fd_config.model_config.tie_word_embeddings
 | |
|         self.lm_head = ParallelLMHead(
 | |
|             fd_config=fd_config,
 | |
|             embedding_dim=fd_config.model_config.hidden_size,
 | |
|             num_embeddings=fd_config.model_config.vocab_size,
 | |
|             prefix="lm_head",
 | |
|         )
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self):
 | |
|         """ """
 | |
|         return "Qwen3ForCausalLM"
 | |
| 
 | |
|     @paddle.no_grad()
 | |
|     def set_state_dict(self, state_dict):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         self.model.load_state_dict(state_dict)
 | |
|         if self.tie_word_embeddings:
 | |
|             self.lm_head.linear.weight.set_value(self.model.embed_tokens.embeddings.weight.transpose([1, 0]))
 | |
|         else:
 | |
|             self.lm_head.load_state_dict(state_dict)
 | |
| 
 | |
|     def compute_logits(self, hidden_states: paddle.Tensor):
 | |
|         """ """
 | |
|         logits = self.lm_head(hidden_states)
 | |
|         logits = paddle.cast(logits, paddle.float32)
 | |
|         logits[:, self.ori_vocab_size :] = -float("inf")
 | |
| 
 | |
|         return logits
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         """ """
 | |
|         hidden_states = self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta)
 | |
| 
 | |
|         return hidden_states
 | |
| 
 | |
| 
 | |
| class Qwen3PretrainedModel(PretrainedModel):
 | |
|     """
 | |
|     Qwen3PretrainedModel
 | |
|     """
 | |
| 
 | |
|     config_class = FDConfig
 | |
| 
 | |
|     def _init_weight(self, layer):
 | |
|         """
 | |
|         _init_weight
 | |
|         """
 | |
|         return None
 | |
| 
 | |
|     @classmethod
 | |
|     def _get_tensor_parallel_mappings(cls, config, is_split=True):
 | |
| 
 | |
|         from paddleformers.transformers.conversion_utils import split_or_merge_func
 | |
| 
 | |
|         fn = split_or_merge_func(
 | |
|             is_split=is_split,
 | |
|             tensor_parallel_degree=config.tensor_parallel_degree,
 | |
|             tensor_parallel_rank=config.tensor_parallel_rank,
 | |
|             num_attention_heads=config.num_attention_heads,
 | |
|         )
 | |
| 
 | |
|         def get_tensor_parallel_split_mappings(num_layers):
 | |
|             final_actions = {}
 | |
| 
 | |
|             base_actions = {
 | |
|                 # Row Linear
 | |
|                 "lm_head.weight": partial(fn, is_column=True),
 | |
|                 "embed_tokens.weight": partial(fn, is_column=False),
 | |
|                 "layers.0.self_attn.o_proj.weight": partial(fn, is_column=False),
 | |
|                 "layers.0.mlp.down_proj.weight": partial(fn, is_column=False),
 | |
|             }
 | |
| 
 | |
|             # Column Linear
 | |
| 
 | |
|             base_actions["layers.0.self_attn.q_proj.weight"] = partial(fn, is_column=True)
 | |
|             base_actions["layers.0.self_attn.q_proj.bias"] = partial(fn, is_column=True)
 | |
|             # if we have enough num_key_value_heads to split, then split it.
 | |
|             if config.num_key_value_heads % config.tensor_parallel_degree == 0:
 | |
|                 base_actions["layers.0.self_attn.k_proj.weight"] = partial(fn, is_column=True)
 | |
|                 base_actions["layers.0.self_attn.v_proj.weight"] = partial(fn, is_column=True)
 | |
| 
 | |
|             base_actions["layers.0.mlp.gate_proj.weight"] = partial(fn, is_column=True)
 | |
|             base_actions["layers.0.mlp.up_proj.weight"] = partial(fn, is_column=True)
 | |
| 
 | |
|             for key, action in base_actions.items():
 | |
|                 if "layers.0." in key:
 | |
|                     for i in range(num_layers):
 | |
|                         final_actions[key.replace("layers.0.", f"layers.{i}.")] = action
 | |
|                 final_actions[key] = action
 | |
| 
 | |
|             return final_actions
 | |
| 
 | |
|         mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers)
 | |
|         return mappings
 | 
