Files
FastDeploy/tests/utils/test_config.py
2025-09-09 07:22:56 +00:00

119 lines
4.3 KiB
Python

import unittest
import logging
from unittest.mock import patch
from fastdeploy import envs
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
ParallelConfig,
)
class TestConfig(unittest.TestCase):
def test_fdconfig_nnode(self):
parallel_config = ParallelConfig({"tensor_parallel_size": 16, "expert_parallel_size": 1})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
ips=["1.1.1.1", "0.0.0.0"],
test_mode=True,
)
assert fd_config.nnode == 2
assert fd_config.is_master is False
def test_fdconfig_ips(self):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
ips="0.0.0.0",
test_mode=True,
)
assert fd_config.master_ip == "0.0.0.0"
def test_fdconfig_max_num_tokens(self):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
cache_config.enable_chunked_prefill = True
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
ips="0.0.0.0",
test_mode=True,
)
if not envs.ENABLE_V1_KVCACHE_SCHEDULER:
assert fd_config.max_num_batched_tokens == 2048
cache_config.enable_chunked_prefill = False
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
ips="0.0.0.0",
test_mode=True,
)
if not envs.ENABLE_V1_KVCACHE_SCHEDULER:
assert fd_config.max_num_batched_tokens == 8192
def test_fdconfig_init_cache(self):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
cache_config.cache_transfer_protocol = "rdma,ipc"
cache_config.pd_comm_port = "2334"
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
splitwise_role="prefill",
test_mode=True,
)
fd_config.init_cache_info()
assert fd_config.disaggregate_info["role"] == "prefill"
def test_gpu_memory_utilization_warning(self):
"""Test that a warning is issued when gpu_memory_utilization >= 0.95"""
with patch('fastdeploy.utils.console_logger') as mock_logger:
# Test case 1: gpu_memory_utilization = 0.95 should trigger warning
cache_config = CacheConfig({"gpu_memory_utilization": 0.95})
mock_logger.warning.assert_called_once()
warning_call = mock_logger.warning.call_args[0][0]
self.assertIn("0.95", warning_call)
self.assertIn("out-of-memory", warning_call)
self.assertIn("below 0.9", warning_call)
# Reset mock
mock_logger.reset_mock()
# Test case 2: gpu_memory_utilization = 0.99 should trigger warning
cache_config = CacheConfig({"gpu_memory_utilization": 0.99})
mock_logger.warning.assert_called_once()
# Reset mock
mock_logger.reset_mock()
# Test case 3: gpu_memory_utilization = 0.9 should NOT trigger warning
cache_config = CacheConfig({"gpu_memory_utilization": 0.9})
mock_logger.warning.assert_not_called()
# Reset mock
mock_logger.reset_mock()
# Test case 4: gpu_memory_utilization = 0.8 should NOT trigger warning
cache_config = CacheConfig({"gpu_memory_utilization": 0.8})
mock_logger.warning.assert_not_called()
if __name__ == "__main__":
unittest.main()