mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* feat: add OpenAIServing * feat: add ZmqOpenAIServing & OpenAIServingEmbedding * feat: Refine the basic ServingEngine class and introduce ServingContext * fix: codestyle * fix: request * fix: pooling_params * feat: _process_chat_template_kwargs * feat: support batch request * feat: pooling_params verify & default parameters --------- Co-authored-by: sunlei1024 <sunlei1024@example.com>
279 lines
10 KiB
Python
279 lines
10 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import asyncio
|
|
import time
|
|
import traceback
|
|
import uuid
|
|
from abc import ABC, abstractmethod
|
|
from collections.abc import AsyncGenerator
|
|
from typing import Any, ClassVar, Dict, Generic, Optional, TypeVar, Union
|
|
|
|
from pydantic import BaseModel, ConfigDict, Field
|
|
from typing_extensions import override
|
|
|
|
from fastdeploy.engine.request import PoolingRequestOutput, RequestOutput
|
|
from fastdeploy.entrypoints.openai.protocol import (
|
|
ErrorInfo,
|
|
ErrorResponse,
|
|
InvalidParameterException,
|
|
)
|
|
from fastdeploy.utils import ErrorCode, ErrorType, api_server_logger
|
|
|
|
RequestT = TypeVar("RequestT")
|
|
|
|
|
|
class ServeContext(
|
|
BaseModel,
|
|
Generic[RequestT],
|
|
):
|
|
# Shared across all requests
|
|
request: RequestT
|
|
request_output: Optional[Union[RequestOutput, PoolingRequestOutput]] = None
|
|
model_name: str
|
|
request_id: str
|
|
created_time: int = Field(default_factory=lambda: int(time.time()))
|
|
|
|
# `protected_namespaces` resolves Pydantic v2's warning
|
|
# on conflict with protected namespace "model_"
|
|
model_config = ConfigDict(
|
|
protected_namespaces=(),
|
|
arbitrary_types_allowed=True,
|
|
)
|
|
|
|
|
|
class OpenAIServing(ABC, Generic[RequestT]):
|
|
request_id_prefix: ClassVar[str]
|
|
"""
|
|
Base pipeline for OpenAI-style serving implementations
|
|
"""
|
|
|
|
def __init__(self, engine_client, models, cfg, pid, ips, max_waiting_time):
|
|
self.engine_client = engine_client
|
|
self.models = models
|
|
self.cfg = cfg
|
|
self.pid = pid
|
|
self.max_waiting_time = max_waiting_time
|
|
|
|
# Parse master IP
|
|
if ips is not None:
|
|
if isinstance(ips, list):
|
|
self.master_ip = ips[0]
|
|
else:
|
|
self.master_ip = ips.split(",")[0]
|
|
else:
|
|
self.master_ip = "0.0.0.0"
|
|
|
|
api_server_logger.info(f"master ip: {self.master_ip}")
|
|
|
|
def _check_master(self) -> bool:
|
|
"""Check if current node is master"""
|
|
return self.engine_client.is_master
|
|
|
|
def _check_supported_model(self, model_name: str) -> tuple[bool, str]:
|
|
"""Check if model is supported and return adjusted model name"""
|
|
if not self.models:
|
|
return True, model_name
|
|
is_supported, adjusted_name = self.models.is_supported_model(model_name)
|
|
if not is_supported:
|
|
err_msg = f"Unsupported model: [{model_name}]"
|
|
api_server_logger.error(err_msg)
|
|
return is_supported, adjusted_name
|
|
|
|
async def _acquire_semaphore(self, request_id: str) -> bool:
|
|
"""Acquire engine client semaphore with timeout"""
|
|
try:
|
|
api_server_logger.info(f"Acquire request:{request_id} status:{self.engine_client.semaphore.status()}")
|
|
if self.max_waiting_time < 0:
|
|
await self.engine_client.semaphore.acquire()
|
|
else:
|
|
await asyncio.wait_for(self.engine_client.semaphore.acquire(), timeout=self.max_waiting_time)
|
|
return True
|
|
except asyncio.TimeoutError:
|
|
self._release_semaphore(request_id)
|
|
error_msg = f"Request waiting timeout, request:{request_id} max waiting time:{self.max_waiting_time}"
|
|
api_server_logger.error(error_msg)
|
|
return False
|
|
|
|
def _release_semaphore(self, request_id: str) -> None:
|
|
"""Release engine client semaphore"""
|
|
self.engine_client.semaphore.release()
|
|
api_server_logger.info(f"Release request:{request_id} status:{self.engine_client.semaphore.status()}")
|
|
|
|
def _create_error_response(
|
|
self,
|
|
message: str,
|
|
error_type: ErrorType = ErrorType.INTERNAL_ERROR,
|
|
code: Optional[ErrorCode] = ErrorCode.INTERNAL_ERROR,
|
|
param: Optional[str] = None,
|
|
) -> ErrorResponse:
|
|
"""Create standardized error response"""
|
|
traceback.print_exc()
|
|
api_server_logger.error(message)
|
|
return ErrorResponse(error=ErrorInfo(message=message, type=error_type, code=code, param=param))
|
|
|
|
def _generate_request_id(self, user: Optional[str] = None) -> str:
|
|
"""Generate a unique request ID"""
|
|
if user is not None:
|
|
return f"{self.request_id_prefix}-{user}-{uuid.uuid4()}"
|
|
return f"{self.request_id_prefix}-{uuid.uuid4()}"
|
|
|
|
def _validate_request(self, ctx: ServeContext):
|
|
"""Validate the request before processing"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
async def _preprocess(self, ctx: ServeContext) -> Dict:
|
|
"""Preprocess the request into engine format"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
async def _prepare_generators(self, ctx: ServeContext) -> Any:
|
|
"""Process engine response into final format"""
|
|
# 此函数是一个异步方法,用于处理引擎响应并将其转换为最终格式
|
|
pass
|
|
|
|
@abstractmethod
|
|
def _build_response(self, ctx: ServeContext) -> Any:
|
|
"""Generate the final response object"""
|
|
pass
|
|
|
|
async def handle(self, ctx: ServeContext) -> Union[Any, ErrorResponse]:
|
|
"""Handle incoming requests"""
|
|
generation = self._pipeline(ctx)
|
|
|
|
async for response in generation:
|
|
yield response
|
|
|
|
async def _pipeline(self, ctx: ServeContext) -> Union[Any, ErrorResponse]:
|
|
"""
|
|
Pipeline for handling requests
|
|
Args:
|
|
reqeust: The request to be handled
|
|
Returns:
|
|
A generator that yields responses
|
|
"""
|
|
# Step 1: Request validation
|
|
# Step 1.1: Check if current node is master
|
|
if not self._check_master():
|
|
yield self._create_error_response(
|
|
f"Only master node can accept request, please send to master node: {self.master_ip}"
|
|
)
|
|
|
|
request = ctx.request
|
|
# Step 1.2: Check supported model
|
|
is_supported, request.model = self._check_supported_model(ctx.model_name)
|
|
if not is_supported:
|
|
yield self._create_error_response(
|
|
f"Unsupported model: [{request.model}]", ErrorType.API_CONNECTION_ERROR, ErrorCode.MODEL_NOT_SUPPORT
|
|
)
|
|
|
|
# Step 1.3: Validate request
|
|
self._validate_request(ctx)
|
|
|
|
request_id = self._generate_request_id(getattr(request, "user", None))
|
|
api_server_logger.info(f"Initialize request {request_id}: {request}")
|
|
|
|
# Step 2: Semaphore acquisition
|
|
if not await self._acquire_semaphore(request_id):
|
|
yield self._create_error_response("Request waiting timeout", ErrorType.TIMEOUT_ERROR, ErrorCode.TIMEOUT)
|
|
|
|
try:
|
|
# Step 3: Preprocessing
|
|
await self._preprocess(ctx)
|
|
|
|
# Step 4: Response processing
|
|
generators = self._prepare_generators(ctx)
|
|
|
|
# Step 5: Final response build
|
|
async for request_output in generators:
|
|
ctx.request_output = request_output
|
|
yield self._build_response(ctx)
|
|
|
|
except InvalidParameterException as e:
|
|
traceback.print_exc()
|
|
yield self._create_error_response(str(e.message), ErrorType.INVALID_REQUEST_ERROR, param=e.param)
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
yield self._create_error_response(str(e))
|
|
finally:
|
|
self._release_semaphore(request_id)
|
|
|
|
|
|
class ZmqOpenAIServing(OpenAIServing):
|
|
"""
|
|
OpenAI-style service architecture using ZeroMQ as the communication mechanism.
|
|
"""
|
|
|
|
def __init__(self, engine_client, models, cfg, pid, ips, max_waiting_time, chat_template):
|
|
super().__init__(engine_client, models, cfg, pid, ips, max_waiting_time)
|
|
self.chat_template = chat_template
|
|
|
|
def _request_to_dict(self, ctx: ServeContext):
|
|
request = ctx.request
|
|
if hasattr(request, "to_dict_for_infer"):
|
|
request_dict = request.to_dict_for_infer(ctx.request_id)
|
|
else:
|
|
request_dict = request.dict()
|
|
request_dict["request_id"] = ctx.request_id
|
|
request_dict["arrival_time"] = time.time()
|
|
|
|
self._process_chat_template_kwargs(request_dict)
|
|
return request_dict
|
|
|
|
def _request_to_batch_dicts(self, ctx: ServeContext):
|
|
"""Convert multiple requests to dictionary form"""
|
|
return [self._request_to_dict(ctx)]
|
|
|
|
@override
|
|
async def _preprocess(self, ctx: ServeContext) -> Dict:
|
|
"""Preprocess the request into engine format"""
|
|
request_dicts = self._request_to_batch_dicts(ctx)
|
|
for request_dict in request_dicts:
|
|
api_server_logger.info(f"batch add request_id: {request_dict['request_id']}, request: {request_dict}")
|
|
await self.engine_client.format_and_add_data(request_dict)
|
|
|
|
def _process_chat_template_kwargs(self, request_dict):
|
|
"""Add default values to chat template kwargs"""
|
|
if "chat_template" not in request_dict:
|
|
request_dict["chat_template"] = self.chat_template
|
|
chat_template_kwargs = request_dict.get("chat_template_kwargs") or {}
|
|
chat_template_kwargs.update(
|
|
{
|
|
"chat_template": request_dict.get("chat_template"),
|
|
"add_generation_prompt": request_dict.get("add_generation_prompt"),
|
|
"add_stop_sequences": request_dict.get("add_stop_sequences"),
|
|
}
|
|
)
|
|
request_dict["chat_template_kwargs"] = chat_template_kwargs
|
|
|
|
@override
|
|
async def _prepare_generators(self, ctx: ServeContext) -> AsyncGenerator[RequestOutput]:
|
|
"""Prepare a generator of responses"""
|
|
request_id = ctx.request_id
|
|
try:
|
|
dealer, response_queue = await self.engine_client.connection_manager.get_connection(request_id)
|
|
dealer.write([b"", request_id.encode("utf-8")])
|
|
# if self.engine_client.check_model_weight_status():
|
|
# raise ValueError("Engine is clearing model weight")
|
|
responses = await asyncio.wait_for(response_queue.get(), timeout=60)
|
|
for response in responses:
|
|
yield response
|
|
except Exception as e:
|
|
raise ValueError(f"Error processing response: {str(e)}")
|
|
finally:
|
|
await self.engine_client.connection_manager.cleanup_request(request_id)
|