mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* Support FD block scheduler v1 * Support FD block scheduler v1 * Support FD block scheduler v1 * Fix according to copilot review * Fix according to review * Remove is_dummy * Fix bug when real_bsz=1 * Fix infer first token cost time --------- Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
262 lines
13 KiB
Python
262 lines
13 KiB
Python
import threading
|
|
import time
|
|
from collections import deque
|
|
from collections.abc import Iterable
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from dataclasses import dataclass
|
|
from typing import Union
|
|
|
|
from fastdeploy.engine.request import Request, RequestStatus, RequestType
|
|
from fastdeploy.engine.resource_manager import ResourceManager
|
|
from fastdeploy.utils import llm_logger
|
|
|
|
|
|
@dataclass
|
|
class ScheduledDecodeTask:
|
|
"""
|
|
Task for allocating new blocks to decode.
|
|
"""
|
|
|
|
idx: int
|
|
request_id: str
|
|
block_tables: list[int]
|
|
task_type: RequestType = RequestType.DECODE
|
|
|
|
|
|
@dataclass
|
|
class ScheduledPreemptTask:
|
|
"""
|
|
Task for terminating inference to recycle resource.
|
|
"""
|
|
|
|
idx: int
|
|
request_id: str
|
|
task_type: RequestType = RequestType.PREEMPTED
|
|
|
|
|
|
class ResourceManagerV1(ResourceManager):
|
|
"""
|
|
Resource manager for scheduler v1.
|
|
In scheduler v1, all gpu blocks are managed by PrefixCacheManager.
|
|
Tasks sent to worker are divided into 3 types, PREFILL、DECODE and PREEMPTED.
|
|
For prefill task, the worker infer with one step and then stopped for this query if not all prompt tokens are computed.
|
|
For decode task, the work continues to decode until allocated blocks are exhausted.
|
|
For preempted task, the work reset all inputs to terminate the inference.
|
|
"""
|
|
|
|
def __init__(self, max_num_seqs, config, tensor_parallel_size, splitwise_role, local_data_parallel_id=0):
|
|
super(ResourceManagerV1, self).__init__(
|
|
max_num_seqs, config, tensor_parallel_size, splitwise_role, local_data_parallel_id
|
|
)
|
|
# req_id -> Request
|
|
self.config = config
|
|
self.requests: dict[str, Request] = {}
|
|
# Priority queues for requests.
|
|
self.waiting: deque[Request] = deque()
|
|
self.running: list[Request] = []
|
|
self.finish_execution_pool = ThreadPoolExecutor(max_workers=1)
|
|
self.lock = threading.Lock()
|
|
|
|
def allocated_slots(self, request: Request):
|
|
return len(request.block_tables) * self.config.cache_config.block_size
|
|
|
|
def get_new_block_nums(self, request: Request, num_new_tokens: int):
|
|
return (
|
|
request.num_computed_tokens + num_new_tokens + self.config.cache_config.block_size - 1
|
|
) // self.config.cache_config.block_size - len(request.block_tables)
|
|
|
|
def _prepare_prefill_task(self, request, new_token_num):
|
|
request.prefill_start_index = request.num_computed_tokens
|
|
request.prefill_end_index = request.num_computed_tokens + new_token_num
|
|
request.task_type = RequestType.PREFILL
|
|
return request
|
|
|
|
def _prepare_decode_task(self, request):
|
|
return ScheduledDecodeTask(idx=request.idx, request_id=request.request_id, block_tables=request.block_tables)
|
|
|
|
def _prepare_preempt_task(self, request):
|
|
return ScheduledPreemptTask(idx=request.idx, request_id=request.request_id)
|
|
|
|
def _trigger_preempt(self, request, num_new_blocks, preempted_reqs, scheduled_reqs):
|
|
can_schedule = True
|
|
while True:
|
|
if not self.cache_manager.can_allocate_gpu_blocks(num_new_blocks):
|
|
preempted_req = self.running.pop()
|
|
preempted_req.status = RequestStatus.PREEMPTED
|
|
preempted_req.num_computed_tokens = 0
|
|
self._free_blocks(preempted_req)
|
|
self.waiting.appendleft(preempted_req)
|
|
preempted_reqs.append(preempted_req)
|
|
scheduled_reqs.append(self._prepare_preempt_task(preempted_req))
|
|
if preempted_req == request:
|
|
# No more request to preempt.
|
|
can_schedule = False
|
|
break
|
|
else:
|
|
# The request can be scheduled.
|
|
can_schedule = True
|
|
break
|
|
return can_schedule
|
|
|
|
def schedule(self):
|
|
with self.lock:
|
|
scheduled_reqs: list[Request] = []
|
|
preempted_reqs: list[Request] = []
|
|
token_budget = self.config.max_num_batched_tokens
|
|
|
|
# First, schedule the RUNNING requests.
|
|
req_index = 0
|
|
num_decoding_req_nums = 0
|
|
while req_index < len(self.running) and token_budget > 0:
|
|
request = self.running[req_index]
|
|
if request.num_computed_tokens >= request.prompt_token_ids_len: # to be decoding
|
|
if request.num_total_tokens > request.prompt_token_ids_len: # has generated tokens
|
|
request.num_computed_tokens = request.num_total_tokens - 1
|
|
if (
|
|
self.allocated_slots(request) - request.num_total_tokens
|
|
<= self.config.cache_config.prealloc_dec_block_slot_num_threshold
|
|
):
|
|
# Allocation for next decoding blocks
|
|
if self.cache_manager.can_allocate_gpu_blocks(self.config.cache_config.enc_dec_block_num):
|
|
llm_logger.debug(
|
|
f"schedule decoding task: {request} request.num_total_tokens {request.num_total_tokens} request.num_computed_tokens {request.num_computed_tokens}"
|
|
)
|
|
request.block_tables.extend(
|
|
self.cache_manager.allocate_gpu_blocks(self.config.cache_config.enc_dec_block_num)
|
|
)
|
|
# Prepare decoding task
|
|
scheduled_reqs.append(self._prepare_decode_task(request))
|
|
else:
|
|
# Not enough blocks to allocate, trigger preemption
|
|
can_schedule = self._trigger_preempt(
|
|
request, self.config.cache_config.enc_dec_block_num, preempted_reqs, scheduled_reqs
|
|
)
|
|
if not can_schedule:
|
|
break
|
|
# Allocation for next decoding blocks
|
|
request.block_tables.extend(
|
|
self.cache_manager.allocate_gpu_blocks(self.config.cache_config.enc_dec_block_num)
|
|
)
|
|
# Prepare decoding task
|
|
scheduled_reqs.append(self._prepare_decode_task(request))
|
|
num_decoding_req_nums += 1
|
|
token_budget -= 1
|
|
else: # need to prefill
|
|
llm_logger.debug(
|
|
f"scheduler prefill task: {request} request.prompt_token_ids_len {request.prompt_token_ids_len} request.num_computed_tokens {request.num_computed_tokens}"
|
|
)
|
|
num_new_tokens = request.prompt_token_ids_len - request.num_computed_tokens
|
|
num_new_tokens = min(num_new_tokens, token_budget)
|
|
num_new_block = self.get_new_block_nums(request, num_new_tokens)
|
|
# Allocate blocks to prefill
|
|
if self.cache_manager.can_allocate_gpu_blocks(num_new_block):
|
|
request.block_tables.extend(self.cache_manager.allocate_gpu_blocks(num_new_block))
|
|
# Prepare prefill task
|
|
scheduled_reqs.append(self._prepare_prefill_task(request, num_new_tokens))
|
|
else:
|
|
can_schedule = self._trigger_preempt(request, num_new_block, preempted_reqs, scheduled_reqs)
|
|
if not can_schedule:
|
|
break
|
|
request.block_tables.extend(self.cache_manager.allocate_gpu_blocks(num_new_block))
|
|
# Prepare prefill task
|
|
scheduled_reqs.append(self._prepare_prefill_task(request, num_new_tokens))
|
|
token_budget -= num_new_tokens
|
|
request.num_computed_tokens += num_new_tokens
|
|
req_index += 1
|
|
# schedule the WAITING requests.
|
|
if not preempted_reqs:
|
|
while self.waiting and token_budget > 0:
|
|
if len(self.running) == self.max_num_seqs:
|
|
break
|
|
request = self.waiting[0]
|
|
if request.status == RequestStatus.WAITING:
|
|
num_new_tokens = request.num_total_tokens - request.num_computed_tokens
|
|
num_new_tokens = min(num_new_tokens, token_budget)
|
|
num_new_block = self.get_new_block_nums(request, num_new_tokens)
|
|
# Allocate blocks to prefill
|
|
if self.cache_manager.can_allocate_gpu_blocks(num_new_block):
|
|
request.block_tables.extend(self.cache_manager.allocate_gpu_blocks(num_new_block))
|
|
self.waiting.popleft()
|
|
self.running.append(request)
|
|
scheduled_reqs.append(self._prepare_prefill_task(request, num_new_tokens))
|
|
request.inference_start_time = time.time()
|
|
request.schedule_start_time = time.time()
|
|
token_budget -= num_new_tokens
|
|
request.num_computed_tokens += num_new_tokens
|
|
request.status = RequestStatus.RUNNING
|
|
allocated_position = self.get_available_position()
|
|
request.idx = allocated_position
|
|
self.tasks_list[allocated_position] = request
|
|
self.stop_flags[allocated_position] = False
|
|
self.req_dict[request.request_id] = allocated_position
|
|
else:
|
|
break
|
|
elif request.status == RequestStatus.PREEMPTED:
|
|
num_new_tokens = request.num_total_tokens - request.num_computed_tokens
|
|
num_new_tokens = min(num_new_tokens, token_budget)
|
|
num_new_block = self.get_new_block_nums(request, num_new_tokens)
|
|
# Allocate blocks to prefill
|
|
if self.cache_manager.can_allocate_gpu_blocks(num_new_block):
|
|
request.block_tables.extend(self.cache_manager.allocate_gpu_blocks(num_new_block))
|
|
self.waiting.popleft()
|
|
self.running.append(request)
|
|
scheduled_reqs.append(self._prepare_prefill_task(request, num_new_tokens))
|
|
token_budget -= num_new_tokens
|
|
request.num_computed_tokens += num_new_tokens
|
|
request.status = RequestStatus.RUNNING
|
|
else:
|
|
break
|
|
else:
|
|
llm_logger.error("Unknown request status type")
|
|
if scheduled_reqs:
|
|
llm_logger.debug(f"schedued_reqs: {scheduled_reqs}")
|
|
return scheduled_reqs
|
|
|
|
def get_available_position(self) -> int:
|
|
position = 0
|
|
while position < self.max_num_seqs:
|
|
if self.stop_flags[position] is True:
|
|
return position
|
|
position += 1
|
|
raise RuntimeError("No available position is available for new request")
|
|
|
|
def get_real_bsz(self) -> int:
|
|
for i in range(self.max_num_seqs - 1, -1, -1):
|
|
if not self.stop_flags[i]:
|
|
self.real_bsz = i + 1
|
|
break
|
|
return self.real_bsz
|
|
|
|
def add_request(self, request: Request) -> None:
|
|
self.waiting.append(request)
|
|
self.requests[request.request_id] = request
|
|
|
|
def _free_blocks(self, request: Request):
|
|
self.cache_manager.recycle_gpu_blocks(request.block_tables)
|
|
request.block_tables = []
|
|
|
|
def finish_requests_async(self, request_ids: Union[str, Iterable[str]]):
|
|
return self.finish_execution_pool.submit(self.finish_requests, request_ids)
|
|
|
|
def finish_requests(self, request_ids: Union[str, Iterable[str]]):
|
|
llm_logger.info(f"recycle resources for requests: {request_ids}")
|
|
try:
|
|
with self.lock:
|
|
if isinstance(request_ids, str):
|
|
request_ids = (request_ids,)
|
|
else:
|
|
request_ids = set(request_ids)
|
|
for req_id in request_ids:
|
|
request = self.requests.get(req_id)
|
|
if request is None:
|
|
# Invalid request ID.
|
|
continue
|
|
request.status = RequestStatus.FINISHED
|
|
self.running.remove(request)
|
|
self._free_blocks(request)
|
|
self.tasks_list[request.idx] = None
|
|
self.stop_flags[request.idx] = True
|
|
del self.requests[req_id]
|
|
except Exception as e:
|
|
llm_logger.error(e)
|