mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
* update benchmark tools * update benchmark tools
703 lines
27 KiB
Python
703 lines
27 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
# This file is modified from https://github.com/vllm-project/vllm/blob/main/benchmarks/backend_request_func.py
|
|
|
|
|
|
import io
|
|
import json
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
import aiohttp
|
|
from tqdm.asyncio import tqdm
|
|
|
|
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
|
|
|
|
|
|
@dataclass
|
|
class RequestFuncInput:
|
|
"""Input for requesting LLMs via API"""
|
|
|
|
no: int
|
|
prompt: str
|
|
history_QA: Optional[dict]
|
|
hyper_parameters: dict
|
|
api_url: str
|
|
prompt_len: int
|
|
output_len: int
|
|
model: str
|
|
model_name: Optional[str] = None
|
|
logprobs: Optional[int] = None
|
|
extra_body: Optional[dict] = None
|
|
multi_modal_content: Optional[dict] = None
|
|
ignore_eos: bool = False
|
|
language: Optional[str] = None
|
|
debug: bool = False
|
|
|
|
|
|
@dataclass
|
|
class RequestFuncOutput:
|
|
"""Output for requesting LLMs via API"""
|
|
|
|
no: int = 0
|
|
generated_text: str = ""
|
|
reasoning_content: str = ""
|
|
success: bool = False
|
|
latency: float = 0.0
|
|
output_tokens: int = 0
|
|
ttft: float = 0.0 # Time to first token
|
|
arrival_time: list = field(default_factory=list) # arrival_time
|
|
itl: list = field(default_factory=list) # list of inter-token latencies
|
|
tpot: float = 0.0 # avg next-token latencies
|
|
prompt_len: int = 0
|
|
prompt_tokens: int = 0 # 推理侧返回输入token数
|
|
error: str = ""
|
|
|
|
|
|
async def async_request_eb_openai_chat_completions(
|
|
request_func_input: RequestFuncInput,
|
|
pbar: Optional[tqdm] = None,
|
|
) -> RequestFuncOutput:
|
|
"""Request an LLM using EB OpenAI"""
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith(("completions", "profile")), "OpenAI Chat Completions API URL must end with 'completions'."
|
|
|
|
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
|
content = [{"type": "text", "text": request_func_input.prompt}]
|
|
if request_func_input.multi_modal_content:
|
|
content.append(request_func_input.multi_modal_content)
|
|
payload = {
|
|
"model": request_func_input.model,
|
|
"messages": request_func_input.history_QA,
|
|
"stream": True,
|
|
"stream_options": {
|
|
"include_usage": True,
|
|
"continuous_usage_stats": True,
|
|
},
|
|
}
|
|
# 超参由yaml传入
|
|
payload.update(request_func_input.hyper_parameters)
|
|
|
|
if request_func_input.ignore_eos:
|
|
payload["ignore_eos"] = request_func_input.ignore_eos
|
|
|
|
if request_func_input.debug:
|
|
print(f"payload:{json.dumps(payload, ensure_ascii=False)}")
|
|
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
|
}
|
|
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = 0
|
|
output.no = request_func_input.no
|
|
|
|
ttft = 0.0
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
try:
|
|
async with session.post(url=api_url, json=payload, headers=headers) as response:
|
|
if response.status == 200:
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
|
|
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
|
if chunk != "[DONE]":
|
|
# print("####chunk:", chunk, type(chunk))
|
|
timestamp = time.perf_counter()
|
|
data = json.loads(chunk)
|
|
|
|
if choices := data.get("choices"):
|
|
content = choices[0]["delta"].get("content")
|
|
reason_content = choices[0]["delta"].get("reasoning_content")
|
|
# First token
|
|
if ttft == 0.0:
|
|
ttft = timestamp - st
|
|
output.ttft = ttft
|
|
# cached_tokens
|
|
output.prompt_len = (
|
|
data["usage"].get("prompt_tokens_details", {}).get("cached_tokens", 0)
|
|
)
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp - most_recent_timestamp)
|
|
|
|
output.generated_text += content or ""
|
|
output.reasoning_content += reason_content or ""
|
|
output.arrival_time.append(choices[0].get("arrival_time", timestamp))
|
|
elif usage := data.get("usage", {}):
|
|
output.output_tokens = usage.get("completion_tokens", 0)
|
|
output.prompt_tokens = usage.get("prompt_tokens", 0)
|
|
|
|
most_recent_timestamp = timestamp
|
|
|
|
# output.generated_text = generated_text
|
|
if output.generated_text.strip() == "":
|
|
output.success = False
|
|
output.error = "No generated text found!"
|
|
else:
|
|
output.success = True
|
|
output.latency = most_recent_timestamp - st
|
|
else:
|
|
error_text = await response.text()
|
|
print(
|
|
"####error response:",
|
|
error_text,
|
|
"####payload:",
|
|
payload,
|
|
)
|
|
output.error = error_text or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
|
|
# 保存失败请求结果
|
|
if not output.success:
|
|
with open("error_output.txt", "a") as f:
|
|
f.write(str(output) + "\n")
|
|
if pbar:
|
|
pbar.update(1)
|
|
if request_func_input.debug:
|
|
print("#####final_output:", output)
|
|
return output
|
|
|
|
|
|
async def async_request_eb_openai_completions(
|
|
request_func_input: RequestFuncInput,
|
|
pbar: Optional[tqdm] = None,
|
|
) -> RequestFuncOutput:
|
|
"""Request an LLM using EB OpenAI"""
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith(
|
|
("completions", "profile")
|
|
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
|
|
|
|
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
|
payload = {
|
|
"model": request_func_input.model,
|
|
"prompt": request_func_input.prompt,
|
|
"stream": True,
|
|
"stream_options": {
|
|
"include_usage": True,
|
|
"continuous_usage_stats": True,
|
|
},
|
|
}
|
|
# 超参由yaml传入
|
|
payload.update(request_func_input.hyper_parameters)
|
|
|
|
if request_func_input.ignore_eos:
|
|
payload["ignore_eos"] = request_func_input.ignore_eos
|
|
|
|
if request_func_input.debug:
|
|
print("payload:", json.dumps(payload, ensure_ascii=False))
|
|
|
|
headers = {
|
|
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
output.no = request_func_input.no
|
|
|
|
generated_text = ""
|
|
ttft = 0.0
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
try:
|
|
async with session.post(url=api_url, json=payload, headers=headers) as response:
|
|
if response.status == 200:
|
|
first_chunk_received = False
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
|
|
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
|
if chunk != "[DONE]":
|
|
# print("####chunk:", chunk, chunk.usage)
|
|
timestamp = time.perf_counter()
|
|
data = json.loads(chunk)
|
|
|
|
# NOTE: Some completion API might have a last
|
|
# usage summary response without a token so we
|
|
# want to check a token was generated
|
|
if choices := data.get("choices"):
|
|
# Note that text could be empty here
|
|
# e.g. for special tokens
|
|
text = choices[0].get("text")
|
|
|
|
# First token
|
|
if not first_chunk_received:
|
|
first_chunk_received = True
|
|
ttft = timestamp - st
|
|
output.ttft = ttft
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp - most_recent_timestamp)
|
|
|
|
generated_text += text or ""
|
|
|
|
most_recent_timestamp = timestamp
|
|
output.arrival_time.append(choices[0].get("arrival_time", timestamp))
|
|
elif usage := data.get("usage"):
|
|
output.prompt_tokens = usage.get("prompt_tokens")
|
|
output.output_tokens = usage.get("completion_tokens")
|
|
if first_chunk_received:
|
|
output.success = True
|
|
else:
|
|
output.success = False
|
|
output.error = (
|
|
"Never received a valid chunk to calculate TTFT." "This response will be marked as failed!"
|
|
)
|
|
|
|
output.generated_text = generated_text
|
|
output.latency = most_recent_timestamp - st
|
|
|
|
if output.generated_text == "":
|
|
output.success = False
|
|
output.error = "No generated text found!"
|
|
else:
|
|
output.success = True
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
|
|
if request_func_input.debug:
|
|
print(f"final_output:{output}")
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
async def async_request_tgi(
|
|
request_func_input: RequestFuncInput,
|
|
pbar: Optional[tqdm] = None,
|
|
) -> RequestFuncOutput:
|
|
"""Request an LLM using the TGI API"""
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith("generate_stream")
|
|
|
|
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
|
params = {
|
|
"max_new_tokens": request_func_input.output_len,
|
|
"do_sample": True,
|
|
"temperature": 0.01, # TGI does not accept 0.0 temperature.
|
|
"top_p": 0.99, # TGI does not accept 1.0 top_p.
|
|
"truncate": request_func_input.prompt_len,
|
|
"ignore_eos_token": request_func_input.ignore_eos,
|
|
}
|
|
payload = {
|
|
"inputs": request_func_input.prompt,
|
|
"parameters": params,
|
|
}
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
if request_func_input.ignore_eos:
|
|
output.output_tokens = request_func_input.output_len
|
|
else:
|
|
output.output_tokens = None
|
|
|
|
ttft = 0.0
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
try:
|
|
async with session.post(url=api_url, json=payload) as response:
|
|
if response.status == 200:
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
chunk_bytes = chunk_bytes.decode("utf-8")
|
|
|
|
# NOTE: Sometimes TGI returns a ping response without
|
|
# any data, we should skip it.
|
|
if chunk_bytes.startswith(":"):
|
|
continue
|
|
chunk = chunk_bytes.removeprefix("data:")
|
|
|
|
data = json.loads(chunk)
|
|
timestamp = time.perf_counter()
|
|
# First token
|
|
if ttft == 0.0:
|
|
ttft = time.perf_counter() - st
|
|
output.ttft = ttft
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp - most_recent_timestamp)
|
|
|
|
most_recent_timestamp = timestamp
|
|
output.arrival_time.append(data["arrival_time"])
|
|
|
|
output.latency = most_recent_timestamp - st
|
|
output.success = True
|
|
output.generated_text = data["generated_text"]
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
async def async_request_trt_llm(
|
|
request_func_input: RequestFuncInput,
|
|
pbar: Optional[tqdm] = None,
|
|
) -> RequestFuncOutput:
|
|
"""Request an LLM using TRT's llm_server"""
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith("generate_stream")
|
|
|
|
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
|
payload = {
|
|
"accumulate_tokens": True,
|
|
"text_input": request_func_input.prompt,
|
|
"temperature": 0.0,
|
|
"top_p": 1.0,
|
|
"max_tokens": request_func_input.output_len,
|
|
"stream": True,
|
|
}
|
|
if request_func_input.ignore_eos:
|
|
payload["min_length"] = request_func_input.output_len
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
|
|
ttft = 0.0
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
try:
|
|
async with session.post(url=api_url, json=payload) as response:
|
|
if response.status == 200:
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
|
|
chunk = chunk_bytes.decode("utf-8").removeprefix("data:")
|
|
|
|
data = json.loads(chunk)
|
|
output.generated_text += data["text_output"]
|
|
timestamp = time.perf_counter()
|
|
# First token
|
|
if ttft == 0.0:
|
|
ttft = timestamp - st
|
|
output.ttft = ttft
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp - most_recent_timestamp)
|
|
|
|
most_recent_timestamp = timestamp
|
|
|
|
output.latency = most_recent_timestamp - st
|
|
output.success = True
|
|
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
async def async_request_deepspeed_mii(
|
|
request_func_input: RequestFuncInput,
|
|
pbar: Optional[tqdm] = None,
|
|
) -> RequestFuncOutput:
|
|
"""Request an LLM using Deepspeed MII"""
|
|
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
|
|
|
payload = {
|
|
"prompt": request_func_input.prompt,
|
|
"max_tokens": request_func_input.output_len,
|
|
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
|
|
"top_p": 1.0,
|
|
}
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
|
|
# NOTE: DeepSpeed-MII doesn't support streaming as of Jan 28 2024,
|
|
# will use 0 as placeholder.
|
|
# See https://github.com/microsoft/DeepSpeed-MII/pull/311
|
|
output.ttft = 0
|
|
|
|
st = time.perf_counter()
|
|
try:
|
|
async with session.post(url=request_func_input.api_url, json=payload) as response:
|
|
if response.status == 200:
|
|
parsed_resp = await response.json()
|
|
output.latency = time.perf_counter() - st
|
|
if "choices" in parsed_resp:
|
|
output.generated_text = parsed_resp["choices"][0]["text"]
|
|
elif "text" in parsed_resp:
|
|
output.generated_text = parsed_resp["text"][0]
|
|
else:
|
|
output.error = "Unexpected response format: " "neither 'choices' nor 'text' found"
|
|
output.success = False
|
|
output.success = True
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
async def async_request_openai_completions(
|
|
request_func_input: RequestFuncInput,
|
|
pbar: Optional[tqdm] = None,
|
|
) -> RequestFuncOutput:
|
|
"""Request an LLM using OpenAI"""
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith(
|
|
("completions", "profile")
|
|
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
|
|
|
|
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
|
payload = {
|
|
"model": (request_func_input.model_name if request_func_input.model_name else request_func_input.model),
|
|
"prompt": request_func_input.prompt,
|
|
# "temperature": 0.0,
|
|
"max_tokens": request_func_input.output_len,
|
|
"logprobs": request_func_input.logprobs,
|
|
"stream": True,
|
|
# "stream_options": {
|
|
# "include_usage": True,
|
|
# },
|
|
}
|
|
if request_func_input.ignore_eos:
|
|
payload["ignore_eos"] = request_func_input.ignore_eos
|
|
|
|
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
|
|
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
|
|
generated_text = ""
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
try:
|
|
async with session.post(url=api_url, json=payload, headers=headers) as response:
|
|
if response.status == 200:
|
|
first_chunk_received = False
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
|
|
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
|
if chunk != "[DONE]":
|
|
# print("####chunk:", chunk, type(chunk))
|
|
data = json.loads(chunk)
|
|
|
|
# NOTE: Some completion API might have a last
|
|
# usage summary response without a token so we
|
|
# want to check a token was generated
|
|
if choices := data.get("choices"):
|
|
# Note that text could be empty here
|
|
# e.g. for special tokens
|
|
text = choices[0].get("text")
|
|
timestamp = time.perf_counter()
|
|
# First token
|
|
if not first_chunk_received:
|
|
first_chunk_received = True
|
|
ttft = time.perf_counter() - st
|
|
output.ttft = ttft
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp - most_recent_timestamp)
|
|
|
|
most_recent_timestamp = timestamp
|
|
generated_text += text or ""
|
|
elif usage := data.get("usage"):
|
|
output.output_tokens = usage.get("completion_tokens")
|
|
if first_chunk_received:
|
|
output.success = True
|
|
else:
|
|
output.success = False
|
|
output.error = (
|
|
"Never received a valid chunk to calculate TTFT." "This response will be marked as failed!"
|
|
)
|
|
output.generated_text = generated_text
|
|
output.latency = most_recent_timestamp - st
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
async def async_request_openai_audio(
|
|
request_func_input: RequestFuncInput,
|
|
pbar: Optional[tqdm] = None,
|
|
) -> RequestFuncOutput:
|
|
"""Request an LLM using OpenAI"""
|
|
# Lazy import without PlaceholderModule to avoid vllm dep.
|
|
import soundfile
|
|
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith(
|
|
("transcriptions", "translations")
|
|
), "OpenAI Chat Completions API URL must end with 'transcriptions' "
|
|
"or `translations`."
|
|
|
|
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
|
|
content = [{"type": "text", "text": request_func_input.prompt}]
|
|
payload = {
|
|
"model": (request_func_input.model_name if request_func_input.model_name else request_func_input.model),
|
|
"temperature": 0.0,
|
|
"max_completion_tokens": request_func_input.output_len,
|
|
"stream": True,
|
|
"language": "en",
|
|
# Flattened due to multipart/form-data
|
|
"stream_include_usage": True,
|
|
"stream_continuous_usage_stats": True,
|
|
}
|
|
if request_func_input.extra_body:
|
|
payload.update(request_func_input.extra_body)
|
|
headers = {
|
|
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
|
}
|
|
|
|
# Send audio file
|
|
def to_bytes(y, sr):
|
|
buffer = io.BytesIO()
|
|
soundfile.write(buffer, y, sr, format="WAV")
|
|
buffer.seek(0)
|
|
return buffer
|
|
|
|
with to_bytes(*request_func_input.multi_modal_content["audio"]) as f:
|
|
form = aiohttp.FormData()
|
|
form.add_field("file", f, content_type="audio/wav")
|
|
for key, value in payload.items():
|
|
form.add_field(key, str(value))
|
|
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
|
|
generated_text = ""
|
|
ttft = 0.0
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
try:
|
|
async with session.post(url=api_url, data=form, headers=headers) as response:
|
|
if response.status == 200:
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
|
|
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
|
if chunk != "[DONE]":
|
|
timestamp = time.perf_counter()
|
|
data = json.loads(chunk)
|
|
|
|
if choices := data.get("choices"):
|
|
content = choices[0]["delta"].get("content")
|
|
# First token
|
|
if ttft == 0.0:
|
|
ttft = timestamp - st
|
|
output.ttft = ttft
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp - most_recent_timestamp)
|
|
|
|
generated_text += content or ""
|
|
elif usage := data.get("usage"):
|
|
output.output_tokens = usage.get("completion_tokens")
|
|
|
|
most_recent_timestamp = timestamp
|
|
|
|
output.generated_text = generated_text
|
|
output.success = True
|
|
output.latency = most_recent_timestamp - st
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
ASYNC_REQUEST_FUNCS = {
|
|
"tgi": async_request_tgi,
|
|
"vllm": async_request_openai_completions,
|
|
"lmdeploy": async_request_openai_completions,
|
|
"deepspeed-mii": async_request_deepspeed_mii,
|
|
"openai": async_request_eb_openai_completions,
|
|
"openai-chat": async_request_eb_openai_chat_completions,
|
|
"openai-audio": async_request_openai_audio,
|
|
"tensorrt-llm": async_request_trt_llm,
|
|
"scalellm": async_request_openai_completions,
|
|
"sglang": async_request_openai_completions,
|
|
}
|
|
|
|
OPENAI_COMPATIBLE_BACKENDS = [
|
|
k
|
|
for k, v in ASYNC_REQUEST_FUNCS.items()
|
|
if v
|
|
in (
|
|
async_request_openai_completions,
|
|
async_request_eb_openai_chat_completions,
|
|
)
|
|
]
|