Files
FastDeploy/tests/model_executor/test_entropy_utils.py
GoldPancake 23d488c488
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
[Feature] Entropy calculation support (#5692)
* support entropy

* fix bug

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-12-23 21:19:47 +08:00

213 lines
8.5 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
from fastdeploy.model_executor.entropy_utils import (
calculate_logits_entropy,
speculate_calculate_logits_entropy,
)
class TestCalculateLogitsEntropy(unittest.TestCase):
def test_basic_functionality(self):
share_inputs = {
"seq_lens_this_time": paddle.to_tensor([[1], [0], [15]], dtype="int32"),
"seq_lens_encoder": paddle.to_tensor([[0], [0], [15]], dtype="int32"),
"entropy_list": [[], [], []],
"stop_flags": paddle.to_tensor([[False], [True], [False]], dtype="bool"),
"req_ids": ["req_1", "req_2", "req_3"],
}
logits = paddle.to_tensor(
[
[10.0, 1.0, 1.0],
[1.0, 1.0, 10.0],
],
dtype="float32",
)
temperature = paddle.ones([3], dtype="float32")
calculate_logits_entropy(logits, share_inputs, temperature)
self.assertEqual(len(share_inputs["entropy_list"][0]), 1)
self.assertEqual(len(share_inputs["entropy_list"][1]), 0)
self.assertEqual(len(share_inputs["entropy_list"][2]), 1)
self.assertAlmostEqual(share_inputs["entropy_list"][0][0], 0.0024676250759512186, places=6)
self.assertAlmostEqual(share_inputs["entropy_list"][2][0], 0.0024676250759512186, places=6)
def test_temperature_effect(self):
share_inputs = {
"seq_lens_this_time": paddle.to_tensor([[1], [0], [15]], dtype="int32"),
"seq_lens_encoder": paddle.to_tensor([[0], [0], [15]], dtype="int32"),
"entropy_list": [[], [], []],
"stop_flags": paddle.to_tensor([[False], [True], [False]], dtype="bool"),
"req_ids": ["req_1", "req_2", "req_3"],
}
logits = paddle.to_tensor(
[
[10.0, 1.0, 1.0],
[1.0, 1.0, 10.0],
],
dtype="float32",
)
temperature = paddle.to_tensor([[0.8], [1.0], [0.8]], dtype="float32")
calculate_logits_entropy(logits, share_inputs, temperature)
self.assertEqual(len(share_inputs["entropy_list"][0]), 1)
self.assertEqual(len(share_inputs["entropy_list"][1]), 0)
self.assertEqual(len(share_inputs["entropy_list"][2]), 1)
self.assertAlmostEqual(share_inputs["entropy_list"][0][0], 0.0003187173861078918, places=6)
self.assertAlmostEqual(share_inputs["entropy_list"][2][0], 0.0003187173861078918, places=6)
def test_entropy_list_clear(self):
share_inputs = {
"seq_lens_this_time": paddle.to_tensor([[1], [0], [15]], dtype="int32"),
"seq_lens_encoder": paddle.to_tensor([[0], [0], [15]], dtype="int32"),
"entropy_list": [[], [], []],
"stop_flags": paddle.to_tensor([[True], [True], [False]], dtype="bool"),
"req_ids": ["req_1", "req_2", "req_3"],
}
logits = paddle.to_tensor(
[
[10.0, 1.0, 1.0],
[1.0, 1.0, 10.0],
],
dtype="float32",
)
temperature = paddle.to_tensor([[0.8], [1.0], [0.8]], dtype="float32")
calculate_logits_entropy(logits, share_inputs, temperature)
self.assertEqual(len(share_inputs["entropy_list"][0]), 0)
self.assertEqual(len(share_inputs["entropy_list"][1]), 0)
self.assertEqual(len(share_inputs["entropy_list"][2]), 1)
self.assertAlmostEqual(share_inputs["entropy_list"][2][0], 0.0003187173861078918, places=6)
class TestSpeculateCalculateLogitsEntropy(unittest.TestCase):
def test_basic_functionality(self):
share_inputs = {
"seq_lens_this_time": paddle.to_tensor([[2], [2], [0], [15]], dtype="int32"),
"seq_lens_encoder": paddle.to_tensor([[0], [0], [0], [15]], dtype="int32"),
"entropy_list": [[], [], [], []],
"stop_flags": paddle.to_tensor([[False], [False], [True], [False]], dtype="bool"),
"req_ids": ["req_1", "req_2", "req_3", "req_4"],
"accept_num": paddle.to_tensor([2, 1, 0, 0], dtype="int32"), # 推理接受数量
}
logits = paddle.to_tensor(
[
[10.0, 1.0, 1.0],
[1.0, 10.0, 1.0],
[1.0, 1.0, 10.0],
[1.0, 1.0, 10.0],
],
dtype="float32",
)
temperature = paddle.ones([3], dtype="float32")
speculate_calculate_logits_entropy(logits, share_inputs, temperature)
print(share_inputs["entropy_list"])
self.assertEqual(len(share_inputs["entropy_list"][0]), 2)
self.assertEqual(len(share_inputs["entropy_list"][1]), 1)
self.assertEqual(len(share_inputs["entropy_list"][2]), 0)
self.assertEqual(len(share_inputs["entropy_list"][3]), 0)
self.assertAlmostEqual(share_inputs["entropy_list"][0][0], 0.0024676250759512186, places=6)
self.assertAlmostEqual(share_inputs["entropy_list"][0][1], 0.0024676250759512186, places=6)
self.assertAlmostEqual(share_inputs["entropy_list"][1][0], 0.0024676250759512186, places=6)
def test_temperature_effect(self):
share_inputs = {
"seq_lens_this_time": paddle.to_tensor([[2], [2], [0], [15]], dtype="int32"),
"seq_lens_encoder": paddle.to_tensor([[0], [0], [0], [15]], dtype="int32"),
"entropy_list": [[], [], [], []],
"stop_flags": paddle.to_tensor([[False], [False], [True], [False]], dtype="bool"),
"req_ids": ["req_1", "req_2", "req_3", "req_4"],
"accept_num": paddle.to_tensor([2, 1, 0, 0], dtype="int32"), # 推理接受数量
}
logits = paddle.to_tensor(
[
[10.0, 1.0, 1.0],
[1.0, 10.0, 1.0],
[1.0, 1.0, 10.0],
[1.0, 1.0, 10.0],
],
dtype="float32",
)
temperature = paddle.to_tensor([[0.8], [0.8], [0.8], [0.8]], dtype="float32")
speculate_calculate_logits_entropy(logits, share_inputs, temperature)
print(share_inputs["entropy_list"])
self.assertEqual(len(share_inputs["entropy_list"][0]), 2)
self.assertEqual(len(share_inputs["entropy_list"][1]), 1)
self.assertEqual(len(share_inputs["entropy_list"][2]), 0)
self.assertEqual(len(share_inputs["entropy_list"][3]), 0)
self.assertAlmostEqual(share_inputs["entropy_list"][0][0], 0.0003187173861078918, places=6)
self.assertAlmostEqual(share_inputs["entropy_list"][0][1], 0.0003187173861078918, places=6)
self.assertAlmostEqual(share_inputs["entropy_list"][1][0], 0.0003187173861078918, places=6)
def test_entropy_list_clear(self):
share_inputs = {
"seq_lens_this_time": paddle.to_tensor([[2], [2], [0], [15]], dtype="int32"),
"seq_lens_encoder": paddle.to_tensor([[0], [0], [0], [15]], dtype="int32"),
"entropy_list": [[], [], [], []],
"stop_flags": paddle.to_tensor([[True], [False], [True], [False]], dtype="bool"),
"req_ids": ["req_1", "req_2", "req_3", "req_4"],
"accept_num": paddle.to_tensor([2, 1, 0, 0], dtype="int32"), # 推理接受数量
}
logits = paddle.to_tensor(
[
[10.0, 1.0, 1.0],
[1.0, 10.0, 1.0],
[1.0, 1.0, 10.0],
[1.0, 1.0, 10.0],
],
dtype="float32",
)
temperature = paddle.ones([3], dtype="float32")
speculate_calculate_logits_entropy(logits, share_inputs, temperature)
print(share_inputs["entropy_list"])
self.assertEqual(len(share_inputs["entropy_list"][0]), 0)
self.assertEqual(len(share_inputs["entropy_list"][1]), 1)
self.assertEqual(len(share_inputs["entropy_list"][2]), 0)
self.assertEqual(len(share_inputs["entropy_list"][3]), 0)
self.assertAlmostEqual(share_inputs["entropy_list"][1][0], 0.0024676250759512186, places=6)
if __name__ == "__main__":
unittest.main()