Files
FastDeploy/tests/v1/test_schedule_output.py
chenjian 3878a99b69 [Fearture] Support cache kv cache for output tokens (#4535)
* [Fearture] Support cache kv cache for output tokens

* fix bug

* fix ci bug

* improve coverage

* enable output caching by default

* fix ci

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-12-04 20:53:08 +08:00

201 lines
8.5 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from dataclasses import asdict
from types import SimpleNamespace
from fastdeploy.config import CacheConfig, FDConfig, ParallelConfig, SchedulerConfig
from fastdeploy.engine.args_utils import EngineArgs
from fastdeploy.engine.request import Request
from fastdeploy.engine.sched.resource_manager_v1 import ResourceManagerV1
def test_normal_schedule():
max_num_seqs = 3
engine_args = EngineArgs(max_num_seqs=max_num_seqs, num_gpu_blocks_override=160, max_num_batched_tokens=3200)
args = asdict(engine_args)
cache_cfg = CacheConfig(args)
model_cfg = SimpleNamespace(enable_mm=False)
speculative_cfg = SimpleNamespace(method=None)
model_cfg.print = print
model_cfg.max_model_len = 5120
cache_cfg.bytes_per_layer_per_block = 1
parallel_cfg = ParallelConfig(args)
scheduler_cfg = SchedulerConfig(args)
graph_opt_cfg = engine_args.create_graph_optimization_config()
fd_config = FDConfig(
model_config=model_cfg,
cache_config=cache_cfg,
parallel_config=parallel_cfg,
speculative_config=speculative_cfg,
graph_opt_config=graph_opt_cfg,
scheduler_config=scheduler_cfg,
)
resource_manager_v1 = ResourceManagerV1(
max_num_seqs=max_num_seqs, config=fd_config, tensor_parallel_size=8, splitwise_role="mixed"
)
req1 = Request.from_dict({"request_id": "req1", "prompt_token_ids": [1] * 3199, "prompt_token_ids_len": 3199})
req2 = Request.from_dict({"request_id": "req2", "prompt_token_ids": [2] * 3201, "prompt_token_ids_len": 3201})
req3 = Request.from_dict({"request_id": "req3", "prompt_token_ids": [3] * 3200, "prompt_token_ids_len": 3200})
resource_manager_v1.add_request(req1)
resource_manager_v1.add_request(req2)
resource_manager_v1.add_request(req3)
# step 1
assert len(resource_manager_v1.waiting) == 3
scheduler_reqs, _ = resource_manager_v1.schedule()
assert len(scheduler_reqs) == 2
assert scheduler_reqs[0].request_id == "req1"
assert scheduler_reqs[1].request_id == "req2"
assert scheduler_reqs[0].prefill_start_index == 0
assert scheduler_reqs[1].prefill_start_index == 0
assert scheduler_reqs[0].prefill_end_index == 3199
assert scheduler_reqs[1].prefill_end_index == 1
assert len(resource_manager_v1.running) == 2
assert len(resource_manager_v1.waiting) == 1
# step 2
scheduler_reqs, _ = resource_manager_v1.schedule()
assert len(scheduler_reqs) == 2
assert scheduler_reqs[0].request_id == "req1"
assert len(scheduler_reqs[0].block_tables) == 52
assert scheduler_reqs[1].request_id == "req2"
assert scheduler_reqs[1].prefill_start_index == 1
assert scheduler_reqs[1].prefill_end_index == 3200
assert len(resource_manager_v1.running) == 2
assert len(resource_manager_v1.waiting) == 1
# step 3
scheduler_reqs, _ = resource_manager_v1.schedule()
assert len(scheduler_reqs) == 2
assert scheduler_reqs[0].request_id == "req2"
assert scheduler_reqs[0].prefill_start_index == 3200
assert scheduler_reqs[0].prefill_end_index == 3201
assert scheduler_reqs[1].request_id == "req3"
assert scheduler_reqs[1].prefill_start_index == 0
assert scheduler_reqs[1].prefill_end_index == 3198
assert len(resource_manager_v1.running) == 3
assert len(resource_manager_v1.waiting) == 0
def test_preempted_request():
max_num_seqs = 2
engine_args = EngineArgs(max_num_seqs=max_num_seqs, num_gpu_blocks_override=102, max_num_batched_tokens=3200)
args = asdict(engine_args)
cache_cfg = CacheConfig(args)
model_cfg = SimpleNamespace(enable_mm=False)
speculative_cfg = SimpleNamespace(method=None)
model_cfg.print = print
model_cfg.max_model_len = 5120
cache_cfg.bytes_per_layer_per_block = 1
parallel_cfg = ParallelConfig(args)
scheduler_cfg = SchedulerConfig(args)
graph_opt_cfg = engine_args.create_graph_optimization_config()
fd_config = FDConfig(
model_config=model_cfg,
cache_config=cache_cfg,
parallel_config=parallel_cfg,
graph_opt_config=graph_opt_cfg,
speculative_config=speculative_cfg,
scheduler_config=scheduler_cfg,
)
resource_manager_v1 = ResourceManagerV1(
max_num_seqs=max_num_seqs, config=fd_config, tensor_parallel_size=8, splitwise_role="mixed"
)
req1 = Request.from_dict({"request_id": "req1", "prompt_token_ids": [1] * 3200, "prompt_token_ids_len": 3200})
req2 = Request.from_dict({"request_id": "req2", "prompt_token_ids": [2] * 3200, "prompt_token_ids_len": 3200})
resource_manager_v1.add_request(req1)
resource_manager_v1.add_request(req2)
# step 1
assert len(resource_manager_v1.waiting) == 2
scheduler_reqs, _ = resource_manager_v1.schedule()
assert len(scheduler_reqs) == 1
assert scheduler_reqs[0].request_id == "req1"
assert scheduler_reqs[0].prefill_start_index == 0
assert scheduler_reqs[0].prefill_end_index == 3200
assert len(resource_manager_v1.running) == 1
assert len(resource_manager_v1.waiting) == 1
# step 2
scheduler_reqs, _ = resource_manager_v1.schedule()
assert len(scheduler_reqs) == 2
assert scheduler_reqs[0].request_id == "req1"
assert len(scheduler_reqs[0].block_tables) == 52
# step 3
req1.output_token_ids.extend([1] * 128)
scheduler_reqs, _ = resource_manager_v1.schedule()
assert len(scheduler_reqs) == 2
assert scheduler_reqs[0].request_id == "req2"
assert len(resource_manager_v1.running) == 1
# to be added into waiting queue
assert len(resource_manager_v1.waiting) == 0
assert "req2" in resource_manager_v1.to_be_rescheduled_request_id_set
# mock token_processor to add into waiting
resource_manager_v1.waiting.appendleft(req2)
# step 4
scheduler_reqs, _ = resource_manager_v1.schedule()
assert len(scheduler_reqs) == 0
assert len(resource_manager_v1.running) == 1
assert len(resource_manager_v1.waiting) == 1
def test_caching_output():
max_num_seqs = 2
engine_args = EngineArgs(
max_num_seqs=max_num_seqs,
num_gpu_blocks_override=100,
max_num_batched_tokens=6400,
enable_prefix_caching=True,
enable_output_caching=True,
)
args = asdict(engine_args)
cache_cfg = CacheConfig(args)
model_cfg = SimpleNamespace(enable_mm=False)
speculative_cfg = SimpleNamespace(method=None)
model_cfg.print = print
model_cfg.max_model_len = 5120
cache_cfg.bytes_per_layer_per_block = 1
parallel_cfg = ParallelConfig(args)
scheduler_cfg = SchedulerConfig(args)
graph_opt_cfg = engine_args.create_graph_optimization_config()
fd_config = FDConfig(
model_config=model_cfg,
cache_config=cache_cfg,
parallel_config=parallel_cfg,
graph_opt_config=graph_opt_cfg,
speculative_config=speculative_cfg,
scheduler_config=scheduler_cfg,
)
resource_manager_v1 = ResourceManagerV1(
max_num_seqs=max_num_seqs, config=fd_config, tensor_parallel_size=8, splitwise_role="mixed"
)
req1 = Request.from_dict({"request_id": "req1", "prompt_token_ids": [1] * 3200, "prompt_token_ids_len": 3200})
resource_manager_v1.add_request(req1)
# step 1
assert len(resource_manager_v1.waiting) == 1
scheduler_reqs, _ = resource_manager_v1.schedule()
assert len(scheduler_reqs) == 1
assert scheduler_reqs[0].request_id == "req1"
assert scheduler_reqs[0].prefill_start_index == 0
assert scheduler_reqs[0].prefill_end_index == 3200
assert len(resource_manager_v1.running) == 1
_, _ = resource_manager_v1.schedule()
req1.output_token_ids.extend([1] * 129)
resource_manager_v1.cache_output_tokens(req1)
# step 2
req2 = Request.from_dict({"request_id": "req2", "prompt_token_ids": [1] * 3329, "prompt_token_ids_len": 3329})
resource_manager_v1.add_request(req2)
scheduler_reqs, _ = resource_manager_v1.schedule()
assert scheduler_reqs[1].request_id == "req2"
assert scheduler_reqs[1].prefill_start_index == 3328
assert scheduler_reqs[1].prefill_end_index == 3329