mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
342 lines
12 KiB
Python
342 lines
12 KiB
Python
import unittest
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import numpy as np
|
|
|
|
MODULE_PATH = "fastdeploy.input.ernie4_5_processor"
|
|
|
|
from fastdeploy.input.ernie4_5_processor import _SAMPLING_EPS, Ernie4_5Processor
|
|
|
|
|
|
class MockTokenizer:
|
|
"""A simple mock tokenizer used to simulate tokenization behavior in unit tests."""
|
|
|
|
def __init__(self):
|
|
self.bos_token = "<bos>"
|
|
self.bos_token_id = 101
|
|
self.eos_token = "<eos>"
|
|
self.eos_token_id = 102
|
|
self.pad_token_id = 0
|
|
self.vocab_size = 200
|
|
# Non-None value indicates chat_template support
|
|
self.chat_template = "dummy"
|
|
|
|
def tokenize(self, text):
|
|
"""Return multi-token output for 'multi*' to test branching; otherwise return single-token."""
|
|
if text.startswith("multi"):
|
|
return ["multi", "word"]
|
|
return [text]
|
|
|
|
def convert_tokens_to_ids(self, tokens):
|
|
"""Map tokens to synthetic IDs for branch coverage."""
|
|
mapping = {
|
|
"bad": 5,
|
|
" bad": 6,
|
|
"multi": 7,
|
|
"word": 8,
|
|
"oov": 250,
|
|
" oov": 251,
|
|
"hello": 9,
|
|
"REASON": 42,
|
|
}
|
|
return [mapping.get(t, 1) for t in tokens]
|
|
|
|
def decode(self, token_ids, **kwargs):
|
|
"""Simple decode implementation returning a space-separated string."""
|
|
return " ".join(str(t) for t in token_ids)
|
|
|
|
def decode_token(self, token_ids, prefix_offset, read_offset):
|
|
"""Incremental decode used to test streaming behavior."""
|
|
new_tokens = token_ids[read_offset:]
|
|
decode_str = " ".join(str(t) for t in new_tokens)
|
|
new_read_offset = len(token_ids)
|
|
return decode_str, prefix_offset, new_read_offset
|
|
|
|
def apply_chat_template(self, request_or_messages, tokenize, split_special_tokens, add_special_tokens, **kwargs):
|
|
"""Minimal chat template implementation used by messages2ids."""
|
|
if isinstance(request_or_messages, dict) and "messages" in request_or_messages:
|
|
return " | ".join(m["content"] for m in request_or_messages["messages"])
|
|
return str(request_or_messages)
|
|
|
|
|
|
class ErnieX1ReasoningParser:
|
|
"""Mock reasoning parser to trigger reasoning-related branches during streaming."""
|
|
|
|
def __init__(self, tokenizer):
|
|
self.tokenizer = tokenizer
|
|
|
|
def extract_reasoning_content_streaming(
|
|
self,
|
|
previous_texts,
|
|
full_text,
|
|
delta_text,
|
|
previous_token_ids,
|
|
all_token_ids,
|
|
delta_token_ids,
|
|
):
|
|
"""Return a simple object with reasoning_content to cover reasoning branch."""
|
|
|
|
class ReasoningDelta:
|
|
def __init__(self, content):
|
|
self.reasoning_content = content
|
|
|
|
return ReasoningDelta("REASON")
|
|
|
|
|
|
class MockToolParser:
|
|
"""Mock tool parser to cover tool-related branches in both normal and streaming responses."""
|
|
|
|
def __init__(self, tokenizer):
|
|
self.tokenizer = tokenizer
|
|
|
|
class ToolDelta:
|
|
"""Simple container representing detected tool calls."""
|
|
|
|
def __init__(self):
|
|
self.tool_calls = [{"name": "fake_tool"}]
|
|
self.tools_called = True
|
|
self.content = "tool_content"
|
|
|
|
def extract_tool_calls(self, full_text, response_dict):
|
|
"""Used in process_response and process_response_dict_normal."""
|
|
return MockToolParser.ToolDelta()
|
|
|
|
def extract_tool_calls_streaming(
|
|
self,
|
|
previous_texts,
|
|
full_text,
|
|
delta_text,
|
|
previous_token_ids,
|
|
all_token_ids,
|
|
delta_token_ids,
|
|
response_dict,
|
|
):
|
|
"""Used in process_response_dict_streaming."""
|
|
return MockToolParser.ToolDelta()
|
|
|
|
|
|
class TestErnie4_5Processor(unittest.TestCase):
|
|
"""Unit tests for Ernie4_5Processor focusing on preprocessing and postprocessing logic."""
|
|
|
|
def setUp(self):
|
|
"""Patch external dependencies: tokenizer, generation config, eos token resolution."""
|
|
self.gen_patcher = patch(f"{MODULE_PATH}.GenerationConfig.from_pretrained", return_value=MagicMock())
|
|
self.tokenizer_patcher = patch(
|
|
f"{MODULE_PATH}.Ernie4_5Tokenizer.from_pretrained", side_effect=lambda path: MockTokenizer()
|
|
)
|
|
self.eos_patcher = patch(
|
|
"paddleformers.trl.llm_utils.get_eos_token_id",
|
|
side_effect=lambda tokenizer, cfg: [tokenizer.eos_token_id],
|
|
)
|
|
|
|
self.gen_patcher.start()
|
|
self.tokenizer_patcher.start()
|
|
self.eos_patcher.start()
|
|
|
|
def tearDown(self):
|
|
"""Stop all patches after each test."""
|
|
self.gen_patcher.stop()
|
|
self.tokenizer_patcher.stop()
|
|
self.eos_patcher.stop()
|
|
|
|
def _make_processor(self, reasoning=False, tool=False):
|
|
"""Helper for creating a processor with optional reasoning/tool parser support."""
|
|
reasoning_cls = ErnieX1ReasoningParser if reasoning else None
|
|
tool_cls = MockToolParser if tool else None
|
|
proc = Ernie4_5Processor("dummy-model", reasoning_parser_obj=reasoning_cls, tool_parser_obj=tool_cls)
|
|
proc._apply_default_parameters = lambda req: req
|
|
return proc
|
|
|
|
def test_update_bad_words(self):
|
|
"""Verify filtering, multi-token skipping, and OOV behavior in update_bad_words."""
|
|
proc = self._make_processor()
|
|
|
|
bad_words = ["bad", "multi", "oov"]
|
|
token_ids = proc.update_bad_words(bad_words, bad_words_token_ids=None)
|
|
|
|
self.assertEqual(token_ids, [5, 6, 1])
|
|
|
|
def test_process_request_dict_with_prompt_string(self):
|
|
"""Test prompt-based tokenization, truncation, and temperature/top_p correction."""
|
|
proc = self._make_processor()
|
|
req = {
|
|
"prompt": "hello",
|
|
"temperature": 0.0,
|
|
"top_p": 0.0,
|
|
}
|
|
|
|
processed = proc.process_request_dict(req, max_model_len=10)
|
|
|
|
self.assertIn("eos_token_ids", processed)
|
|
self.assertEqual(processed["eos_token_ids"], [proc.tokenizer.eos_token_id])
|
|
|
|
expected_ids = proc.tokenizer.convert_tokens_to_ids(proc.tokenizer.tokenize("hello"))
|
|
self.assertEqual(processed["prompt_token_ids"], expected_ids)
|
|
|
|
self.assertEqual(processed["max_tokens"], max(1, 10 - len(expected_ids)))
|
|
self.assertEqual(processed["temperature"], 1)
|
|
self.assertAlmostEqual(processed["top_p"], _SAMPLING_EPS)
|
|
self.assertEqual(processed["prompt_tokens"], "hello")
|
|
|
|
def test_pad_batch_data_right_and_left_and_empty(self):
|
|
"""Test left/right padding and empty input behavior."""
|
|
proc = self._make_processor()
|
|
|
|
insts = [[1, 2], [3]]
|
|
|
|
padded, seq_len = proc.pad_batch_data(
|
|
insts, pad_id=0, return_seq_len=True, return_array=True, pad_style="right"
|
|
)
|
|
np.testing.assert_array_equal(padded, np.array([[1, 2], [3, 0]], dtype=np.int64))
|
|
np.testing.assert_array_equal(seq_len, np.array([[2], [1]], dtype=np.int64))
|
|
|
|
padded_left, seq_len_left = proc.pad_batch_data(
|
|
insts, pad_id=0, return_seq_len=True, return_array=True, pad_style="left"
|
|
)
|
|
np.testing.assert_array_equal(padded_left, np.array([[1, 2], [0, 3]], dtype=np.int64))
|
|
np.testing.assert_array_equal(seq_len_left, np.array([[2], [1]], dtype=np.int64))
|
|
|
|
padded_empty, seq_len_empty = proc.pad_batch_data(
|
|
[], pad_id=0, return_seq_len=True, return_array=True, pad_style="right"
|
|
)
|
|
np.testing.assert_array_equal(padded_empty, np.array([[]], dtype=np.int64))
|
|
np.testing.assert_array_equal(seq_len_empty, np.array([], dtype=np.int64))
|
|
|
|
def test_process_response_dict_streaming_with_reasoning_and_tool(self):
|
|
"""Ensure streaming mode handles reasoning and tool-call parsing correctly."""
|
|
proc = self._make_processor(reasoning=True, tool=True)
|
|
|
|
response = {
|
|
"finished": True,
|
|
"request_id": "req-1",
|
|
"outputs": {"token_ids": [10, 11]},
|
|
}
|
|
|
|
result = proc.process_response_dict_streaming(
|
|
response, enable_thinking=False, include_stop_str_in_output=False
|
|
)
|
|
|
|
outputs = result["outputs"]
|
|
|
|
self.assertIn("completion_tokens", outputs)
|
|
self.assertIn("text", outputs)
|
|
self.assertEqual(outputs["completion_tokens"], outputs["text"])
|
|
|
|
self.assertIn("reasoning_token_num", outputs)
|
|
self.assertGreaterEqual(outputs["reasoning_token_num"], 0)
|
|
|
|
self.assertIn("delta_message", outputs)
|
|
delta_msg = outputs["delta_message"]
|
|
self.assertTrue(hasattr(delta_msg, "tool_calls"))
|
|
|
|
self.assertNotIn("req-1", proc.decode_status)
|
|
self.assertNotIn("req-1", proc.tool_parser_dict)
|
|
|
|
def test_update_stop_seq(self):
|
|
"""Test stop sequence tokenization and padding."""
|
|
proc = self._make_processor()
|
|
|
|
stop_seqs, stop_lens = proc.update_stop_seq("stop")
|
|
self.assertIsInstance(stop_seqs, list)
|
|
self.assertIsInstance(stop_lens, list)
|
|
|
|
stop_seqs2, stop_lens2 = proc.update_stop_seq(["stop", "hello"])
|
|
self.assertEqual(len(stop_seqs2), 2)
|
|
self.assertEqual(len(stop_lens2), 2)
|
|
|
|
def test_process_request_chat_template_kwargs(self):
|
|
"""Test chat_template_kwargs application inside process_request."""
|
|
|
|
proc = self._make_processor()
|
|
|
|
class ReqObj(dict):
|
|
"""Mock request object supporting attributes, set(), and to_dict()."""
|
|
|
|
def set(self, k, v):
|
|
self[k] = v
|
|
|
|
def __getattr__(self, item):
|
|
return self.get(item, None)
|
|
|
|
def to_dict(self):
|
|
return dict(self)
|
|
|
|
request = ReqObj(
|
|
{
|
|
"messages": [{"role": "user", "content": "hello"}],
|
|
"temperature": 0.5,
|
|
"top_p": 0.5,
|
|
}
|
|
)
|
|
|
|
processed = proc.process_request(request, max_model_len=20, chat_template_kwargs={"extra": "VALUE"})
|
|
|
|
self.assertEqual(processed.eos_token_ids, [proc.tokenizer.eos_token_id])
|
|
|
|
expected_ids = proc.tokenizer.convert_tokens_to_ids(proc.tokenizer.tokenize("hello"))
|
|
self.assertIsNotNone(processed.prompt_token_ids)
|
|
self.assertEqual(processed.prompt_token_ids, expected_ids)
|
|
|
|
self.assertIn("max_tokens", processed)
|
|
self.assertEqual(processed["max_tokens"], max(1, 20 - len(expected_ids)))
|
|
|
|
def test_process_request_dict_chat_template_kwargs(self):
|
|
"""Test chat_template_kwargs insertion in process_request_dict."""
|
|
proc = self._make_processor()
|
|
|
|
req = {
|
|
"messages": [{"role": "user", "content": "hey"}],
|
|
"chat_template_kwargs": {"A": "B"},
|
|
"temperature": 0.5,
|
|
"top_p": 0.5,
|
|
}
|
|
|
|
result = proc.process_request_dict(req, max_model_len=30)
|
|
|
|
self.assertIn("prompt_token_ids", result)
|
|
self.assertEqual(result["A"], "B")
|
|
|
|
def test_init_generation_config_exception(self):
|
|
"""Test fallback behavior when GenerationConfig loading fails."""
|
|
with patch(f"{MODULE_PATH}.GenerationConfig.from_pretrained", side_effect=Exception("fail")):
|
|
proc = self._make_processor()
|
|
self.assertIsNone(proc.generation_config)
|
|
|
|
def test_process_response_with_tool_parser(self):
|
|
"""Verify tool_call extraction in process_response."""
|
|
proc = self._make_processor(tool=True)
|
|
|
|
class RespObj:
|
|
"""Mock response carrying token_ids and index for testing."""
|
|
|
|
def __init__(self):
|
|
self.request_id = "reqx"
|
|
self.outputs = MagicMock()
|
|
self.outputs.token_ids = [9, proc.tokenizer.eos_token_id]
|
|
self.outputs.index = 0
|
|
|
|
resp = RespObj()
|
|
result = proc.process_response(resp)
|
|
|
|
self.assertTrue(hasattr(result.outputs, "tool_calls"))
|
|
self.assertEqual(result.outputs.tool_calls[0]["name"], "fake_tool")
|
|
|
|
def test_process_response_dict_normal_with_tool(self):
|
|
"""Verify tool_call extraction in normal (non-streaming) response mode."""
|
|
proc = self._make_processor(tool=True)
|
|
|
|
resp = {
|
|
"finished": True,
|
|
"request_id": "task-99",
|
|
"outputs": {"token_ids": [10, 11], "text": ""},
|
|
}
|
|
|
|
result = proc.process_response_dict_normal(resp, enable_thinking=False, include_stop_str_in_output=False)
|
|
|
|
self.assertIn("tool_call", result["outputs"])
|
|
self.assertEqual(result["outputs"]["tool_call"][0]["name"], "fake_tool")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|