mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
92 lines
2.8 KiB
Python
92 lines
2.8 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import time
|
|
from typing import Any, Union
|
|
|
|
import pytest
|
|
from e2e.utils.serving_utils import (
|
|
FD_API_PORT,
|
|
FD_CACHE_QUEUE_PORT,
|
|
FD_ENGINE_QUEUE_PORT,
|
|
clean_ports,
|
|
)
|
|
|
|
|
|
class FDRunner:
|
|
def __init__(
|
|
self,
|
|
model_name_or_path: str,
|
|
tensor_parallel_size: int = 1,
|
|
max_num_seqs: int = 1,
|
|
max_model_len: int = 1024,
|
|
load_choices: str = "default",
|
|
quantization: str = "None",
|
|
**kwargs,
|
|
) -> None:
|
|
from fastdeploy.entrypoints.llm import LLM
|
|
|
|
clean_ports()
|
|
time.sleep(10)
|
|
graph_optimization_config = {"use_cudagraph": False}
|
|
self.llm = LLM(
|
|
model=model_name_or_path,
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
max_num_seqs=max_num_seqs,
|
|
max_model_len=max_model_len,
|
|
load_choices=load_choices,
|
|
quantization=quantization,
|
|
max_num_batched_tokens=max_model_len,
|
|
graph_optimization_config=graph_optimization_config,
|
|
port=FD_API_PORT,
|
|
cache_queue_port=FD_CACHE_QUEUE_PORT,
|
|
engine_worker_queue_port=FD_ENGINE_QUEUE_PORT,
|
|
**kwargs,
|
|
)
|
|
|
|
def generate(
|
|
self,
|
|
prompts: list[str],
|
|
sampling_params,
|
|
**kwargs: Any,
|
|
) -> list[tuple[list[list[int]], list[str]]]:
|
|
|
|
req_outputs = self.llm.generate(prompts, sampling_params=sampling_params, **kwargs)
|
|
outputs: list[tuple[list[list[int]], list[str]]] = []
|
|
for output in req_outputs:
|
|
outputs.append((output.outputs.token_ids, output.outputs.text))
|
|
return outputs
|
|
|
|
def generate_topp0(
|
|
self,
|
|
prompts: Union[list[str]],
|
|
max_tokens: int,
|
|
**kwargs: Any,
|
|
) -> list[tuple[list[int], str]]:
|
|
from fastdeploy.engine.sampling_params import SamplingParams
|
|
|
|
topp_params = SamplingParams(temperature=0.0, top_p=0, max_tokens=max_tokens)
|
|
outputs = self.generate(prompts, topp_params, **kwargs)
|
|
return outputs
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
del self.llm
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def fd_runner():
|
|
return FDRunner
|