mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* [Intel HPU] add example benchmark scripts for hpu * Revise the code based on the copilot comments * update code based on comments * update ci ops version
155 lines
7.1 KiB
Bash
Executable File
155 lines
7.1 KiB
Bash
Executable File
#!/bin/bash
|
|
DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
|
echo "$DIR"
|
|
|
|
#install dependencies
|
|
apt install -y lsof
|
|
|
|
export FD_API_PORT=8388
|
|
export FD_ENGINE_QUEUE_PORT=8902
|
|
export FD_METRICS_PORT=8202
|
|
|
|
#release relative resource
|
|
ps -efww | grep -E 'api_server' | grep -v grep | awk '{print $2}' | xargs kill -9 || true
|
|
ps -efww | grep -E $FD_API_PORT | grep -v grep | awk '{print $2}' | xargs kill -9 || true
|
|
lsof -t -i :$FD_API_PORT | xargs kill -9 || true
|
|
|
|
echo "pip requirements"
|
|
python -m pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
|
|
python -m pip install -r requirements.txt
|
|
|
|
echo "uninstall org"
|
|
#to uninstall PaddleCustomDevie (paddle-intel-hpu)
|
|
python -m pip uninstall paddle-intel-hpu -y
|
|
#to uninstall fastdeploy
|
|
python -m pip uninstall fastdeploy_intel_hpu -y
|
|
#to install paddlepaddle
|
|
pip install paddlepaddle==3.1.1 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
|
|
#to install paddlecustomdevice? (paddle-intel-hpu)
|
|
pip install https://paddle-qa.bj.bcebos.com/suijiaxin/HPU/paddle_intel_hpu-0.0.2-cp310-cp310-linux_x86_64.whl
|
|
pip install https://paddle-qa.bj.bcebos.com/suijiaxin/HPU/paddlenlp_ops-0.0.2-cp310-cp310-linux_x86_64.whl
|
|
|
|
#to build and install fastdeploy
|
|
echo "build whl"
|
|
wget -q https://paddle-qa.bj.bcebos.com/suijiaxin/HPU/third-party/DeepGEMM.tar.gz && tar -xzf DeepGEMM.tar.gz -C custom_ops/third_party/
|
|
wget -q https://paddle-qa.bj.bcebos.com/suijiaxin/HPU/third-party/cutlass.tar.gz && tar -xzf cutlass.tar.gz -C custom_ops/third_party/
|
|
wget -q https://paddle-qa.bj.bcebos.com/suijiaxin/HPU/third-party/json.tar.gz && tar -xzf json.tar.gz -C custom_ops/third_party/ && mv custom_ops/third_party/json custom_ops/third_party/nlohmann_json
|
|
chmod +x build.sh
|
|
bash build.sh || exit 1
|
|
pip install dist/fastdeploy_intel_hpu-2.3.0.dev0-py3-none-any.whl --force-reinstall
|
|
|
|
#to install dependencies
|
|
echo "pip others"
|
|
pip install numpy
|
|
pip install requests
|
|
pip install tqdm
|
|
pip install ddt
|
|
pip install gradio
|
|
pip install aistudio-sdk
|
|
pip install pytest
|
|
|
|
#start serving
|
|
rm -rf log/*
|
|
rm -f server.log
|
|
#clear the message queue
|
|
ipcrm --all=msg
|
|
|
|
#start server
|
|
export GC_KERNEL_PATH=/usr/lib/habanalabs/libtpc_kernels.so
|
|
export GC_KERNEL_PATH=/usr/local/lib/python3.10/dist-packages/paddle_custom_device/intel_hpu/libcustom_tpc_perf_lib.so:$GC_KERNEL_PATH
|
|
export PADDLE_DISTRI_BACKEND=xccl
|
|
export PADDLE_XCCL_BACKEND=intel_hpu
|
|
export FLAGS_intel_hpu_recipe_cache_num=20480
|
|
export HABANA_PROFILE=0
|
|
|
|
#no proxy using
|
|
unset http_proxy
|
|
unset https_proxy
|
|
unset no_proxy
|
|
|
|
echo "MODEL_PATH=${MODEL_PATH}"
|
|
#currently Fastdepoly PR testing is working together with PaddleCostomDevice PR testing on a same Intel HPUs Machine
|
|
#ERNIE-4.5-300B-A47B-Paddl will use all HPUS (8HPUs) and will block PaddleCostomDevice PR testing
|
|
#so let us to use ERNIE-4.5-21B-A3B-Paddle firstly, which only needs 1 HPU
|
|
FD_ATTENTION_BACKEND_NAME="HPU_ATTN"
|
|
#ERNIE-4.5-300B-A47B-Paddle (300B)
|
|
ENABLE_TESTING_ERNIE45_300B_A47B_Paddle=0
|
|
if [ $ENABLE_TESTING_ERNIE45_300B_A47B_Paddle -eq 1 ]; then
|
|
export model_path=${MODEL_PATH}/ERNIE-4.5-300B-A47B-Paddle
|
|
export HPU_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
|
|
echo "CMD Line: HPU_PERF_BREAKDOWN_SYNC_MODE=1 HPU_WARMUP_BUCKET=0 HPU_WARMUP_MODEL_LEN=3072 FD_ATTENTION_BACKEND=$FD_ATTENTION_BACKEND_NAME python -m fastdeploy.entrypoints.openai.api_server --model $model_path --port $FD_API_PORT --engine-worker-queue-port $FD_ENGINE_QUEUE_PORT --metrics-port $FD_METRICS_PORT --kv-cache-ratio 0.98 --num-gpu-blocks-override 3200 --tensor-parallel-size 8 --max-model-len 32786 --max-num-seqs 128 --block-size 128 --graph-optimization-config '{"use_cudagraph":false}' > server.log 2>&1 &"
|
|
HPU_PERF_BREAKDOWN_SYNC_MODE=1 HPU_WARMUP_BUCKET=0 HPU_WARMUP_MODEL_LEN=3072 FD_ATTENTION_BACKEND=$FD_ATTENTION_BACKEND_NAME python -m fastdeploy.entrypoints.openai.api_server --model $model_path --port $FD_API_PORT --engine-worker-queue-port $FD_ENGINE_QUEUE_PORT --metrics-port $FD_METRICS_PORT --kv-cache-ratio 0.98 --num-gpu-blocks-override 3200 --tensor-parallel-size 8 --max-model-len 32786 --max-num-seqs 128 --block-size 128 --graph-optimization-config '{"use_cudagraph":false}' > server.log 2>&1 &
|
|
fi
|
|
|
|
#ERNIE-4.5-21B-A3B-Paddle (21B)
|
|
ENABLE_TESTING_ERNIE45_21B_A3B_Paddle=1
|
|
if [ $ENABLE_TESTING_ERNIE45_21B_A3B_Paddle -eq 1 ]; then
|
|
export model_path=${MODEL_PATH}/ERNIE-4.5-21B-A3B-Paddle/
|
|
export HPU_VISIBLE_DEVICES=3
|
|
echo "CMD Line: HPU_PERF_BREAKDOWN_SYNC_MODE=1 HPU_WARMUP_BUCKET=0 HPU_WARMUP_MODEL_LEN=4096 FD_ATTENTION_BACKEND=$FD_ATTENTION_BACKEND_NAME python -m fastdeploy.entrypoints.openai.api_server --model $model_path --port $FD_API_PORT --engine-worker-queue-port $FD_ENGINE_QUEUE_PORT --metrics-port $FD_METRICS_PORT --tensor-parallel-size 1 --max-model-len 32786 --max-num-seqs 128 --block-size 128 --graph-optimization-config '{"use_cudagraph":false}' > server.log 2>&1 &"
|
|
HPU_PERF_BREAKDOWN_SYNC_MODE=1 HPU_WARMUP_BUCKET=0 HPU_WARMUP_MODEL_LEN=4096 FD_ATTENTION_BACKEND=$FD_ATTENTION_BACKEND_NAME python -m fastdeploy.entrypoints.openai.api_server --model $model_path --port $FD_API_PORT --engine-worker-queue-port $FD_ENGINE_QUEUE_PORT --metrics-port $FD_METRICS_PORT --tensor-parallel-size 1 --max-model-len 32786 --max-num-seqs 128 --block-size 128 --graph-optimization-config '{"use_cudagraph":false}' > server.log 2>&1 &
|
|
fi
|
|
|
|
sleep 60
|
|
#checking serving active status
|
|
TIMEOUT=$((60 * 60)) #60min
|
|
INTERVAL=10 #check each 10s
|
|
ENDPOINT="http://0.0.0.0:$FD_API_PORT/health"
|
|
START_TIME=$(date +%s) #start time
|
|
echo "Start to check the serving active status, waiting total ${TIMEOUT} seconds"
|
|
while true; do
|
|
#calculate time
|
|
CURRENT_TIME=$(date +%s)
|
|
ELAPSED=$((CURRENT_TIME - START_TIME))
|
|
|
|
#to check timeout
|
|
if [ $ELAPSED -ge $TIMEOUT ]; then
|
|
echo -e "\nstart serving failed with timeout: $((TIMEOUT/60)) seconds"
|
|
cat server.log
|
|
#ERNIE-4.5-21B-A3B-Paddle only has workerlog.0
|
|
cat log/workerlog.0
|
|
#ERNIE-4.5-300B-A47B-Paddle (300B) will have 8 workerlog
|
|
if [ $ENABLE_TESTING_ERNIE45_300B_A47B_Paddle -eq 1 ]; then
|
|
cat log/workerlog.1
|
|
cat log/workerlog.2
|
|
cat log/workerlog.3
|
|
cat log/workerlog.4
|
|
cat log/workerlog.5
|
|
cat log/workerlog.6
|
|
cat log/workerlog.7
|
|
fi
|
|
exit 1
|
|
fi
|
|
|
|
HTTP_CODE=$(curl -s -o /dev/null -w "%{http_code}" -m 2 "$ENDPOINT" || true)
|
|
|
|
if [ "$HTTP_CODE" = "200" ]; then
|
|
echo -e "\nserving start successfully! it costs total ${ELAPSED} seconds"
|
|
break
|
|
else
|
|
echo -e "$(date +%F_%H:%M:%S) checking serving start status......"
|
|
sleep $INTERVAL
|
|
fi
|
|
done
|
|
|
|
cat server.log
|
|
|
|
#to do serving inference
|
|
echo "Start inference testing..."
|
|
python -m pytest tests/ci_use/HPU/run_ernie.py
|
|
exit_code=$?
|
|
echo exit_code is ${exit_code}
|
|
|
|
ps -efww | grep -E 'api_server' | grep -v grep | awk '{print $2}' | xargs kill -9 || true
|
|
ps -efww | grep -E $FD_API_PORT | grep -v grep | awk '{print $2}' | xargs kill -9 || true
|
|
lsof -t -i :$FD_API_PORT | xargs kill -9 || true
|
|
|
|
if [ ${exit_code} -ne 0 ]; then
|
|
echo "log/workerlog.0"
|
|
cat log/workerlog.0
|
|
echo "mold testing failed, please help to do check for your PR source codeing"
|
|
exit 1
|
|
fi
|
|
|
|
sleep 5
|