Files
FastDeploy/fastdeploy/worker/xpu_model_runner.py
ddchenhao66 eb309e5a2a
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
[XPU]Set top_p=0.0 by default on XPU to optimize performance (#5688)
Co-authored-by: ddchenhao66 <dhaochen163.com>
2025-12-23 11:00:53 +08:00

1627 lines
76 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
import random
import time
from typing import List, Optional
import numpy as np
import paddle
from paddle import nn
from fastdeploy import envs
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request, RequestType
from fastdeploy.input.ernie4_5_vl_processor import DataProcessor
from fastdeploy.inter_communicator import IPCSignal
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.graph_optimization.utils import (
profile_run_guard,
sot_warmup_guard,
)
from fastdeploy.model_executor.layers.attention import get_attention_backend
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
AttentionBackend,
)
from fastdeploy.model_executor.layers.rotary_embedding import get_rope, get_rope_3d
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import Sampler, SpeculativeSampler
from fastdeploy.model_executor.model_loader import get_model_loader
from fastdeploy.model_executor.models.ernie4_5_vl.modeling_resampler import ScatterOp
from fastdeploy.model_executor.ops.xpu import (
create_kv_signal_sender,
destroy_kv_signal_sender,
recover_decode_task,
set_data_ipc,
share_external_data,
)
from fastdeploy.model_executor.xpu_pre_and_post_process import (
step_xpu,
xpu_post_process_normal,
xpu_post_process_specualate,
xpu_pre_process,
xpu_process_output,
)
from fastdeploy.spec_decode import MTPProposer
from fastdeploy.utils import get_logger
from fastdeploy.worker.model_runner_base import ModelRunnerBase
from fastdeploy.worker.output import ModelOutputData, ModelRunnerOutput
logger = get_logger("xpu_model_runner", "xpu_model_runner.log")
class XPUModelRunner(ModelRunnerBase):
""" """
def __init__(
self,
fd_config: FDConfig,
device: str, # logic device
device_id: int, # physical device id
rank: int,
local_rank: int,
):
super().__init__(fd_config=fd_config, device=device)
self.enable_mm = self.model_config.enable_mm
self.rank = rank
self.local_rank = local_rank
self.device_id = device_id
self.enable_early_stop = self.fd_config.early_stop_config.enable_early_stop
self.enable_logprob = fd_config.model_config.enable_logprob
self.ori_vocab_size = self.fd_config.model_config.ori_vocab_size
self.max_logprobs = (
self.ori_vocab_size if fd_config.model_config.max_logprobs == -1 else fd_config.model_config.max_logprobs
)
# VL model config:
if self.enable_mm:
self._init_image_preprocess()
self.amp_black = [
"reduce_sum",
"c_softmax_with_cross_entropy",
"elementwise_div",
"sin",
"cos",
"sort",
"multinomial",
]
self.amp_white = [
"lookup_table",
"lookup_table_v2",
"flash_attn",
"matmul",
"matmul_v2",
"fused_gemm_epilogue",
]
if self.cache_config.max_encoder_cache > 0:
self.encoder_cache: dict[str, paddle.Tensor] = {}
else:
self.encoder_cache = None
self.device_id = device_id
self.speculative_method = self.fd_config.speculative_config.method
self.speculative_decoding = self.speculative_method is not None
# used by SamplingMetadata
self.enable_logprob = fd_config.model_config.enable_logprob # fd_config.model_config.enable_logprob
self.enable_early_stop = self.fd_config.early_stop_config.enable_early_stop
# Sampler
# TODU(lilujia): sync with GPU
if not self.speculative_decoding:
self.sampler = Sampler(fd_config)
else:
self.sampler = SpeculativeSampler(fd_config)
# Lazy initialize kv cache after model loading
# self.kv_caches: list[paddle.Tensor] = []
# Cuda Graph
self.graph_opt_level = self.graph_opt_config.graph_opt_level
self.use_cudagraph = False
self.sot_warmup_sizes = self.graph_opt_config.sot_warmup_sizes
self.input_ids = paddle.zeros(self.scheduler_config.max_num_seqs, dtype="int32")
# Initialize share inputs
self._init_share_inputs(self.fd_config.scheduler_config.max_num_seqs)
self.infer_seed_increment = paddle.full(
shape=[self.scheduler_config.max_num_seqs, 1],
fill_value=4,
dtype="int64",
).cpu()
# Initialize attention Backend
# NOTE(gonshaotian): Currently, all attention layers share one attention backend instance.
# In the future, we will expand it as a list.
self.attn_backends: list[AttentionBackend] = []
self.initialize_attn_backend()
# Forward meta store the global meta information of the forward
self.forward_meta: ForwardMeta = None
self.pd_disaggregation_mode: str = self.fd_config.parallel_config.pd_disaggregation_mode
def exist_prefill(self):
"""
check whether prefill stage exist
"""
if int(paddle.max(self.share_inputs["seq_lens_encoder"])) != 0:
return 1
else:
return 0
def get_chunked_inputs(self, req: Request):
"""
Get inputs in current chunk
"""
prefill_start_index = req.prefill_start_index
prefill_end_index = req.prefill_end_index
inputs = req.multimodal_inputs
input_ids = inputs["input_ids"][prefill_start_index:prefill_end_index]
token_type_ids = inputs["token_type_ids"][prefill_start_index:prefill_end_index]
image_type_ids = inputs["image_type_ids"][req.image_type_ids_start : req.image_type_ids_end]
images = inputs["images"][req.image_start : req.image_end]
grid_thw = inputs["grid_thw"][req.num_image_start : req.num_image_end]
mm_hashes = inputs["mm_hashes"][req.num_image_start : req.num_image_end]
return (
input_ids,
token_type_ids,
image_type_ids,
images,
grid_thw,
mm_hashes,
)
def batch_uncached_inputs(self, req: Request):
"""
Batch uncached multimodal inputs
"""
(input_ids, token_type_ids, image_type_ids, images, grid_thw, mm_hashes) = self.get_chunked_inputs(req)
image_type_ids_size = grid_thw[:, 0]
image_type_ids_split = np.cumsum(image_type_ids_size)[:-1]
image_type_ids_lst = np.array_split(image_type_ids, image_type_ids_split, axis=0)
images_size = np.prod(grid_thw, axis=1)
images_split = np.cumsum(images_size)[:-1]
images_lst = np.array_split(images, images_split, axis=0)
assert len(image_type_ids_lst) == len(
mm_hashes
), f"image_type_ids_lst length {len(image_type_ids_lst)} != mm_hashes length {len(mm_hashes)}"
assert len(images_lst) == len(
mm_hashes
), f"images_lst length {len(images_lst)} != mm_hashes length {len(mm_hashes)}"
uncached_image_type_ids = []
uncached_images = []
uncached_grid_thw = []
uncached_mm_hashes = []
for i, mm_hash in enumerate(mm_hashes):
if mm_hash in self.encoder_cache:
continue
uncached_image_type_ids.append(image_type_ids_lst[i])
uncached_images.append(images_lst[i])
uncached_grid_thw.append(grid_thw[i])
uncached_mm_hashes.append(mm_hash)
uncached_input_ids = paddle.to_tensor(input_ids, dtype=paddle.int64)
uncached_token_type_ids = paddle.to_tensor(token_type_ids, dtype=paddle.int64)
if len(uncached_mm_hashes) > 0:
uncached_image_type_ids = paddle.to_tensor(np.hstack(uncached_image_type_ids), dtype=paddle.int64)
uncached_images = paddle.to_tensor(
np.vstack(uncached_images), dtype="uint8" if "ernie" in self.model_config.model_type else "bfloat16"
)
uncached_grid_thw = paddle.to_tensor(uncached_grid_thw, dtype=paddle.int64)
return (
uncached_input_ids,
uncached_token_type_ids,
uncached_image_type_ids,
uncached_images,
uncached_grid_thw,
uncached_mm_hashes,
)
def scatter_and_cache_features(self, image_features, inputs):
"""
Split batched image features and cache them
"""
merge_size = 2
grid_thw = inputs["grid_thw"]
mm_hashes = inputs["mm_hashes"]
image_features_size = (paddle.prod(grid_thw[:, 1:], axis=1) // (merge_size**2)).tolist()
image_features_lst = paddle.split(image_features, image_features_size, axis=0)
assert len(image_features_lst) == len(
mm_hashes
), f"image_features_lst length {len(image_features_lst)} != mm_hashes length {len(mm_hashes)}"
for i, mm_hash in enumerate(mm_hashes):
self.encoder_cache[mm_hash] = image_features_lst[i].cpu()
def _apply_mm_inputs(self, request: Request, multi_vision_inputs: dict, rope_3d_position_ids: dict):
"""
Apply multimodal inputs to share_inputs
- add image_features, extract and cache vision features from model
- add rope_emb, rotate position embeddings
"""
if self.encoder_cache:
evict_mm_hashes = request.get("evict_mm_hashes", None)
if evict_mm_hashes:
for mm_hash in evict_mm_hashes:
self.encoder_cache.pop(mm_hash, None)
inputs = request.multimodal_inputs
if request.with_image:
if envs.FD_ENABLE_MAX_PREFILL:
multi_vision_inputs["images_lst"].append(
inputs["images"][request.image_start : request.image_end].cuda()
)
multi_vision_inputs["grid_thw_lst"].extend(
inputs["grid_thw"][request.num_image_start : request.num_image_end]
)
multi_vision_inputs["cu_seqlens"].extend(
inputs["vit_seqlen"][request.num_image_start : request.num_image_end]
)
multi_vision_inputs["vit_position_ids_lst"].extend(
inputs["vit_position_ids"][request.num_image_start : request.num_image_end]
)
else:
vision_inputs = inputs
if self.encoder_cache:
(
vision_inputs["input_ids"],
vision_inputs["token_type_ids"],
vision_inputs["image_type_ids"],
vision_inputs["images"],
vision_inputs["grid_thw"],
vision_inputs["mm_hashes"],
) = self.batch_uncached_inputs(request)
if len(vision_inputs["mm_hashes"]) > 0:
# uncached multimodal inputs exist
image_features = self.extract_vision_features(vision_inputs)
self.scatter_and_cache_features(image_features, vision_inputs)
full_image_features_lst = []
for mm_hash in inputs["mm_hashes"][request.num_image_start : request.num_image_end]:
feature = self.encoder_cache[mm_hash].cuda()
full_image_features_lst.append(feature)
image_features = paddle.concat(full_image_features_lst, axis=0)
else:
(
input_ids,
token_type_ids,
image_type_ids,
images,
grid_thw,
mm_hashes,
) = self.get_chunked_inputs(request)
vision_inputs["input_ids"] = paddle.to_tensor(input_ids, dtype=paddle.int64)
vision_inputs["token_type_ids"] = paddle.to_tensor(token_type_ids, dtype=paddle.int64)
vision_inputs["image_type_ids"] = paddle.to_tensor(image_type_ids, dtype=paddle.int64)
vision_inputs["images"] = paddle.to_tensor(
images, dtype="uint8" if "ernie" in self.model_config.model_type else "bfloat16"
)
vision_inputs["grid_thw"] = paddle.to_tensor(grid_thw, dtype=paddle.int64)
vision_inputs["mm_hashes"] = mm_hashes
image_features = self.extract_vision_features(vision_inputs)
# part of the first image may be already cached
if "ernie" in self.model_config.model_type:
actual_image_token_num = paddle.sum(vision_inputs["input_ids"] == self.model_config.im_patch_id)
elif "qwen" in self.model_config.model_type:
actual_image_token_num = paddle.sum(
vision_inputs["input_ids"] == vision_inputs["image_patch_id"]
) + paddle.sum(vision_inputs["input_ids"] == vision_inputs["video_patch_id"])
else:
raise ValueError(f"multiple modalities model {self.model_config.model_type} is not supported")
self.share_inputs["image_features"] = image_features[-actual_image_token_num:]
position_ids = request.multimodal_inputs["position_ids"]
rope_3d_position_ids["position_ids_idx"].append(request.idx)
rope_3d_position_ids["position_ids_lst"].append(position_ids)
rope_3d_position_ids["position_ids_offset"].append(
position_ids.shape[0] + rope_3d_position_ids["position_ids_offset"][-1]
)
rope_3d_position_ids["max_tokens_lst"].append(request.get("max_tokens", 2048))
def only_decode(self):
"""
Update Batch type for if_only_decode.
"""
if_only_decode = True
prefill_exists = None
if self.fd_config.parallel_config.use_ep and self.fd_config.scheduler_config.splitwise_role == "mixed":
no_need_stop_list = []
no_need_stop = self.not_need_stop()
paddle.distributed.all_gather_object(no_need_stop_list, not no_need_stop)
if_all_device_empty = all(no_need_stop_list)
if if_all_device_empty:
if_only_decode = False
else:
only_decode_batch_list = []
prefill_exists = self.exist_prefill()
paddle.distributed.all_gather_object(only_decode_batch_list, not prefill_exists)
if_only_decode = all(only_decode_batch_list)
if_only_decode = if_only_decode and not (
prefill_exists if prefill_exists is not None else self.exist_prefill()
)
return if_only_decode
def insert_tasks_v1(self, req_dicts: List[Request], num_running_requests: int):
"""
Process scheduler output tasks, used when ENABLE_V1_KVCACHE_SCHEDULER=1
req_dict: A list of Request dict
num_running_requests: batch_size
"""
# NOTE(luotingdan): Lazy initialize kv cache
if "caches" not in self.share_inputs:
self.initialize_kv_cache()
req_len = len(req_dicts)
has_prefill_task = False
has_decode_task = False
multi_vision_inputs = {"images_lst": [], "grid_thw_lst": [], "vit_position_ids_lst": [], "cu_seqlens": [0]}
rope_3d_position_ids = {
"position_ids_idx": [],
"position_ids_lst": [],
"position_ids_offset": [0],
"max_tokens_lst": [],
}
for i in range(req_len):
request = req_dicts[i]
idx = request.idx
if request.task_type.value == RequestType.PREFILL.value: # prefill task
prefill_start_index = request.prefill_start_index
prefill_end_index = request.prefill_end_index
length = prefill_end_index - prefill_start_index
if self.enable_mm:
self._apply_mm_inputs(request, multi_vision_inputs, rope_3d_position_ids)
if request.get("enable_thinking", False) and request.get("reasoning_max_tokens", None) is not None:
# Enable thinking
self.share_inputs["max_think_lens"][idx : idx + 1, :] = request.get("reasoning_max_tokens")
self.share_inputs["limit_think_status"][idx : idx + 1, :] = 0
else:
# Disable thinking
self.share_inputs["max_think_lens"][idx : idx + 1, :] = -1
self.share_inputs["limit_think_status"][idx : idx + 1, :] = 0
if len(request.output_token_ids) == 0:
input_ids = request.prompt_token_ids
else:
input_ids = request.prompt_token_ids + request.output_token_ids
logger.debug(
f"Handle prefill request {request} at idx {idx} prefill_start_index {prefill_start_index} prefill_end_index {prefill_end_index} need_prefilled_token_num {len(input_ids)}"
)
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(
input_ids[prefill_start_index:prefill_end_index]
)
encoder_block_num = len(request.block_tables)
self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32"
)
self.share_inputs["stop_flags"][idx : idx + 1] = False
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = prefill_start_index
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = 0
self.share_inputs["prompt_lens"][idx : idx + 1] = len(input_ids)
self.share_inputs["is_block_step"][idx : idx + 1] = False
self.share_inputs["step_idx"][idx : idx + 1] = (
len(request.output_token_ids) if prefill_end_index >= len(input_ids) else 0
)
self.share_inputs["pre_ids"][idx : idx + 1] = -1
has_prefill_task = True
elif request.task_type.value == RequestType.DECODE.value: # decode task
logger.debug(f"Handle decode request {request} at idx {idx}")
encoder_block_num = len(request.block_tables)
self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32"
)
if self.share_inputs["is_block_step"][idx]: # has tasks to continue to decode
has_decode_task = True
continue
else: # preempted task
logger.debug(f"Handle preempted request {request} at idx {idx}")
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["stop_flags"][idx : idx + 1] = True
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = 0
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
self.share_inputs["is_block_step"][idx : idx + 1] = False
continue
assert len(request.eos_token_ids) == self.model_config.eos_tokens_lens
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx : idx + 1] = request.get("top_p", 0.7)
self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
self.share_inputs["temperature"][idx : idx + 1] = request.get("temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
self.share_inputs["presence_score"][idx : idx + 1] = request.get("presence_penalty", 0.0)
self.share_inputs["temp_scaled_logprobs"][idx : idx + 1] = request.get("temp_scaled_logprobs", False)
self.share_inputs["top_p_normalized_logprobs"][idx : idx + 1] = request.get(
"top_p_normalized_logprobs", False
)
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
"max_tokens", self.model_config.max_model_len
)
self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
self.share_inputs["ori_seq_lens_encoder"][idx : idx + 1] = length
if request.get("seed") is not None:
self.share_inputs["infer_seed"][idx : idx + 1] = request.get("seed")
if request.get("bad_words_token_ids") is not None and len(request.get("bad_words_token_ids")) > 0:
bad_words_len = len(request.get("bad_words_token_ids"))
self.share_inputs["bad_tokens_len"][idx : idx + 1] = bad_words_len
self.share_inputs["bad_tokens"][idx : idx + 1, :bad_words_len] = np.array(
request.get("bad_words_token_ids"), dtype="int64"
)
else:
self.share_inputs["bad_tokens_len"][idx : idx + 1] = 1
self.share_inputs["bad_tokens"][idx : idx + 1, :] = np.array([-1], dtype="int64")
if request.get("stop_token_ids") is not None and request.get("stop_seqs_len") is not None:
stop_seqs_num = len(request.get("stop_seqs_len"))
for i in range(stop_seqs_num, self.model_config.max_stop_seqs_num):
request.sampling_params.stop_seqs_len.append(0)
self.share_inputs["stop_seqs_len"][idx : idx + 1, :] = np.array(
request.sampling_params.stop_seqs_len, dtype="int32"
)
self.share_inputs["stop_seqs"][
idx : idx + 1, :stop_seqs_num, : len(request.get("stop_token_ids")[0])
] = np.array(request.get("stop_token_ids"), dtype="int64")
else:
self.share_inputs["stop_seqs_len"][idx : idx + 1, :] = 0
if len(multi_vision_inputs["images_lst"]) > 0:
self.share_inputs["image_features"] = self.extract_vision_features(multi_vision_inputs)
if len(rope_3d_position_ids["position_ids_idx"]) > 0:
packed_position_ids = paddle.to_tensor(
np.concatenate(rope_3d_position_ids["position_ids_lst"]), dtype="int64"
)
rope_3d_lst = self.prepare_rope3d(
packed_position_ids,
rope_3d_position_ids["max_tokens_lst"],
rope_3d_position_ids["position_ids_offset"],
)
for i, idx in enumerate(rope_3d_position_ids["position_ids_idx"]):
self.share_inputs["rope_emb"][idx : idx + 1, :] = rope_3d_lst[i]
if has_prefill_task or has_decode_task:
self.share_inputs["not_need_stop"][0] = True
if self.speculative_method in ["mtp"]:
self.proposer.insert_tasks_v1(req_dicts, num_running_requests)
def insert_prefill_inputs(self, req_dicts: List[Request], num_running_requests: int):
"""Process inputs for prefill tasks and update share_inputs buffer"""
# NOTE(luotingdan): Set environment variable of prefill node
if req_dicts[-1].disaggregate_info is not None and req_dicts[-1].disaggregate_info["role"] == "prefill":
os.environ["PREFILL_NODE_ONE_STEP_STOP"] = "1"
req_len = len(req_dicts)
for i in range(req_len):
request = req_dicts[i]
idx = request.idx
length = len(request.prompt_token_ids)
assert length > 0, "The prompt requested must not be empty."
# Is Decode Node
if req_dicts[i].disaggregate_info is not None and req_dicts[i].disaggregate_info["role"] == "decode":
self.share_inputs["pre_ids"][idx : idx + 1] = request.prompt_token_ids[-1]
self.share_inputs["input_ids"][idx : idx + 1, 0] = request.prompt_token_ids[0]
self.share_inputs["prompt_ids"][idx : idx + 1, :length] = np.array(request.prompt_token_ids)
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = length
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = 1
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = 0
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = length
self.share_inputs["prompt_lens"][idx : idx + 1] = length
self.share_inputs["step_idx"][idx : idx + 1] = 1
# TODO support MTP
# if self.speculative_decoding:
# num_prefill_send_token = self.speculative_config.num_speculative_tokens + 1
# self.share_inputs["draft_tokens"][idx : idx + 1, 0:num_prefill_send_token] = paddle.to_tensor(
# request.draft_token_ids[0:num_prefill_send_token],
# dtype="int64",
# )
# self.seq_lens_this_time_buffer[idx : idx + 1] = num_prefill_send_token
else:
self.share_inputs["pre_ids"][idx : idx + 1] = -1
self.share_inputs["step_idx"][idx : idx + 1] = 0
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(request.prompt_token_ids)
self.share_inputs["prompt_ids"][idx : idx + 1, :length] = np.array(request.prompt_token_ids)
if self.enable_mm:
inputs = self._preprocess_mm_task(request.multimodal_inputs)
if inputs.get("images") is not None:
self.share_inputs["image_features"] = self.extract_vision_features(inputs)
else:
# Compatible with the situation that lacks images and videos
self.share_inputs["image_features"] = None
position_ids = inputs["position_ids"]
length = inputs["input_ids"].shape[1]
self.share_inputs["input_ids"][idx : idx + 1, :length] = inputs["input_ids"]
else:
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = length
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
self.share_inputs["prompt_lens"][idx : idx + 1] = length
if self.enable_mm:
self.share_inputs["rope_emb"][idx : idx + 1, :] = self.prepare_rope3d(
position_ids, [request.get("max_tokens", 2048)], [0, position_ids.shape[0]]
)[0]
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
if request.get("enable_thinking", False) and request.get("reasoning_max_tokens", None) is not None:
# Enable thinking
self.share_inputs["max_think_lens"][idx : idx + 1, :] = request.get("reasoning_max_tokens")
self.share_inputs["limit_think_status"][idx : idx + 1, :] = 0
else:
# Disable thinking
self.share_inputs["max_think_lens"][idx : idx + 1, :] = -1
self.share_inputs["limit_think_status"][idx : idx + 1, :] = 0
def get_attr_from_request(request, attr, default_value=None):
res = request.get(attr, default_value)
if res is not None:
return res
else:
return default_value
assert len(request.eos_token_ids) == self.model_config.eos_tokens_lens
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx : idx + 1] = get_attr_from_request(request, "top_p", 0.7)
self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
self.share_inputs["temperature"][idx : idx + 1] = get_attr_from_request(request, "temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = get_attr_from_request(
request, "repetition_penalty", 1.0
)
self.share_inputs["frequency_score"][idx : idx + 1] = get_attr_from_request(
request, "frequency_penalty", 0.0
)
self.share_inputs["presence_score"][idx : idx + 1] = get_attr_from_request(
request, "presence_penalty", 0.0
)
self.share_inputs["temp_scaled_logprobs"][idx : idx + 1] = get_attr_from_request(
request, "temp_scaled_logprobs", False
)
self.share_inputs["top_p_normalized_logprobs"][idx : idx + 1] = get_attr_from_request(
request, "top_p_normalized_logprobs", False
)
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
"max_tokens", self.model_config.max_model_len
)
self.share_inputs["stop_flags"][idx : idx + 1] = False
self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
self.share_inputs["ori_seq_lens_encoder"][idx : idx + 1] = length
if request.get("seed") is not None:
self.share_inputs["infer_seed"][idx : idx + 1] = request.get("seed")
encoder_block_num = len(request.get("block_tables"))
self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32"
)
if request.get("bad_words_token_ids") is not None and len(request.get("bad_words_token_ids")) > 0:
bad_words_len = len(request.get("bad_words_token_ids"))
self.share_inputs["bad_tokens_len"][idx : idx + 1] = bad_words_len
self.share_inputs["bad_tokens"][idx : idx + 1, :bad_words_len] = np.array(
request.get("bad_words_token_ids"), dtype="int64"
)
else:
self.share_inputs["bad_tokens_len"][idx : idx + 1] = 1
self.share_inputs["bad_tokens"][idx : idx + 1, :] = np.array([-1], dtype="int64")
if request.get("stop_token_ids") is not None and request.get("stop_seqs_len") is not None:
stop_seqs_num = len(request.get("stop_seqs_len"))
for i in range(stop_seqs_num, self.model_config.max_stop_seqs_num):
request.sampling_params.stop_seqs_len.append(0)
self.share_inputs["stop_seqs_len"][idx : idx + 1, :] = np.array(
request.sampling_params.stop_seqs_len, dtype="int32"
)
self.share_inputs["stop_seqs"][
idx : idx + 1, :stop_seqs_num, : len(request.get("stop_token_ids")[0])
] = np.array(request.get("stop_token_ids"), dtype="int64")
else:
self.share_inputs["stop_seqs_len"][idx : idx + 1, :] = 0
self.share_inputs["not_need_stop"][0] = True
if self.speculative_method in ["mtp"]:
self.share_inputs["temp_scaled_logprobs"][idx : idx + 1] = get_attr_from_request(
request, "temp_scaled_logprobs", False
)
self.share_inputs["top_p_normalized_logprobs"][idx : idx + 1] = get_attr_from_request(
request, "top_p_normalized_logprobs", False
)
self.proposer.insert_prefill_inputs(req_dicts, num_running_requests)
def _init_share_inputs(self, max_num_seqs: int):
"""Initialize all share buffers for model inputs.
Note: In the future, we may abandon share buffers.
"""
self.MAX_INFER_SEED = 9223372036854775806
self.share_inputs = {}
self.share_inputs["pre_ids"] = paddle.full(
[max_num_seqs, self.model_config.max_model_len],
-1,
dtype="int64",
)
self.share_inputs["input_ids"] = paddle.full(
[max_num_seqs, self.model_config.max_model_len],
self.model_config.pad_token_id,
dtype="int64",
)
self.share_inputs["prompt_ids"] = paddle.full(
[max_num_seqs, self.model_config.max_model_len],
self.model_config.pad_token_id,
dtype="int64",
)
self.share_inputs["eos_token_id"] = paddle.full([self.model_config.eos_tokens_lens, 1], 0, dtype="int64")
# self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1], self.model_config.top_p, dtype="float32")
# self.share_inputs["top_p"] default to 0.0 on XPU for consideration of the performance
self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1], 0.0, dtype="float32")
self.share_inputs["top_k"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["top_k_list"] = [0] * max_num_seqs
self.share_inputs["min_p"] = paddle.full([max_num_seqs, 1], 0.0, dtype="float32")
self.share_inputs["min_p_list"] = [0.0] * max_num_seqs
self.share_inputs["temperature"] = paddle.full(
[max_num_seqs, 1], self.model_config.temperature, dtype="float32"
)
self.share_inputs["penalty_score"] = paddle.full(
[max_num_seqs, 1], self.model_config.penalty_score, dtype="float32"
)
self.share_inputs["frequency_score"] = paddle.full(
[max_num_seqs, 1],
self.model_config.frequency_score,
dtype="float32",
)
self.share_inputs["presence_score"] = paddle.full(
[max_num_seqs, 1], self.model_config.presence_score, dtype="float32"
)
self.share_inputs["temp_scaled_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
self.share_inputs["top_p_normalized_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
self.share_inputs["min_dec_len"] = paddle.full([max_num_seqs, 1], self.model_config.min_length, dtype="int64")
self.share_inputs["max_dec_len"] = paddle.full(
[max_num_seqs, 1], self.model_config.max_model_len, dtype="int64"
)
self.share_inputs["seq_lens_this_time"] = paddle.full(max_num_seqs, 0, dtype="int32")
self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["step_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["step_seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["prompt_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["step_idx"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["not_need_stop"] = paddle.full(
[1], False, dtype="bool"
).cpu() # TODO(gongshaotian): move to pinnd memory
self.share_inputs["stop_flags"] = paddle.full([max_num_seqs, 1], True, dtype="bool")
self.share_inputs["stop_nums"] = paddle.full([1], max_num_seqs, dtype="int64")
self.share_inputs["bad_tokens"] = paddle.full([max_num_seqs, self.model_config.vocab_size], -1, dtype="int64")
self.share_inputs["bad_tokens_len"] = paddle.full([max_num_seqs], 1, dtype="int64")
self.share_inputs["next_tokens"] = paddle.full([max_num_seqs, 1], -1, dtype="int64")
self.share_inputs["is_block_step"] = paddle.full([max_num_seqs], False, dtype="bool")
self.share_inputs["encoder_block_lens"] = paddle.full([max_num_seqs], 0, dtype="int32")
self.share_inputs["step_block_list"] = paddle.full([max_num_seqs], -1, dtype="int32")
self.share_inputs["step_lens"] = paddle.full([1], 0, dtype="int32")
self.share_inputs["recover_block_list"] = paddle.full([max_num_seqs], -1, dtype="int32")
self.share_inputs["recover_lens"] = paddle.full([1], 0, dtype="int32")
self.share_inputs["need_block_list"] = paddle.full([max_num_seqs], -1, dtype="int32")
self.share_inputs["need_block_len"] = paddle.full([1], 0, dtype="int32")
self.share_inputs["used_list_len"] = paddle.full([max_num_seqs], 0, dtype="int32")
self.share_inputs["infer_seed"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["first_token_ids"] = paddle.full([max_num_seqs, 1], -1, dtype="int64")
self.share_inputs["ori_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["system_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["system_ids"] = paddle.full([max_num_seqs, 1], -1, dtype="int32")
self.share_inputs["ids_remove_padding"] = paddle.full(
[max_num_seqs * self.model_config.max_model_len],
0,
dtype="int64",
)
self.share_inputs["batch_id_per_token"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["cu_seqlens_q"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["cu_seqlens_k"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
# Initialize thinking related buffers
self.share_inputs["max_think_lens"] = paddle.full(shape=[max_num_seqs, 1], fill_value=-1, dtype="int32")
self.share_inputs["limit_think_status"] = paddle.full(shape=[max_num_seqs, 1], fill_value=0, dtype="int32")
# Initialize rotary position embedding
tmp_position_ids = paddle.arange(self.model_config.max_model_len).reshape((1, -1))
# TODO(gongshaotian): move to models
if not self.enable_mm:
self.share_inputs["rope_emb"] = get_rope(
rotary_dim=self.model_config.head_dim,
position_ids=tmp_position_ids,
base=self.model_config.rope_theta,
model_config=self.model_config,
)
# Set block tables
pre_max_block_num = (
self.model_config.max_model_len + self.cache_config.block_size - 1
) // self.cache_config.block_size + self.cache_config.enc_dec_block_num
self.share_inputs["block_tables"] = paddle.full([max_num_seqs, pre_max_block_num], -1, dtype="int32")
# Initialize free list
free_list = list(
range(
self.cache_config.total_block_num - 1,
int(self.cache_config.total_block_num * self.cache_config.kv_cache_ratio) - 1,
-1,
)
)
self.free_list_len = len(free_list)
self.share_inputs["free_list"] = paddle.to_tensor(free_list, dtype="int32")
self.share_inputs["free_list_len"] = paddle.full([1], self.free_list_len, dtype="int32")
# Initialize stop seqs
self.share_inputs["stop_seqs_len"] = paddle.full(
[max_num_seqs, self.model_config.max_stop_seqs_num], 0, dtype="int32"
)
self.share_inputs["stop_seqs"] = paddle.full(
[
max_num_seqs,
self.model_config.max_stop_seqs_num,
self.model_config.stop_seqs_max_len,
],
-1,
dtype="int64",
)
if self.enable_mm:
head_dim = self.model_config.head_dim
if "paddleocr" in self.model_config.model_type: # neox style = True
rope_head_dim = head_dim
self.share_inputs["pos_emb_type"] = "NEOX"
else: # neox style = False
rope_head_dim = head_dim // 2
self.share_inputs["pos_emb_type"] = "HALF_HEAD_DIM"
self.share_inputs["rope_emb"] = paddle.full(
shape=[
max_num_seqs,
2,
1,
self.model_config.max_model_len,
1,
rope_head_dim,
],
fill_value=0,
dtype="float32",
)
self.share_inputs["image_features"] = None
if self.speculative_decoding:
max_draft_token_num = self.speculative_config.num_speculative_tokens
self.share_inputs["input_ids_cpu"] = paddle.full(
shape=[max_num_seqs, self.model_config.max_model_len],
fill_value=1,
dtype="int64",
).cpu()
self.share_inputs["accept_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1],
fill_value=0,
dtype="int64",
)
self.share_inputs["accept_num"] = paddle.full(shape=[max_num_seqs], fill_value=0, dtype="int32")
self.share_inputs["draft_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1],
fill_value=0,
dtype="int64",
)
self.share_inputs["actual_draft_token_num"] = paddle.full(
shape=[max_num_seqs],
fill_value=max_draft_token_num,
dtype="int32",
)
self.share_inputs["output_cum_offsets"] = paddle.full(shape=[max_num_seqs, 1], fill_value=0, dtype="int32")
self.share_inputs["output_padding_offset"] = paddle.full(
shape=[max_num_seqs * (max_draft_token_num + 1)],
fill_value=0,
dtype="int32",
)
# For V1_KVCACHE_SCHEDULER
self.share_inputs["step_draft_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1],
fill_value=0,
dtype="int64",
)
self.share_inputs["step_seq_lens_this_time"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["temp_scaled_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype=bool)
self.share_inputs["top_p_normalized_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype=bool)
# For MTP Logprob
self.share_inputs["draft_logits"] = paddle.full(
[max_num_seqs * (self.speculative_config.num_speculative_tokens + 1), self.model_config.vocab_size],
-1,
dtype="float32",
)
self.share_inputs["cu_batch_token_offset"] = paddle.full(
shape=[max_num_seqs + 1], fill_value=0, dtype="int32"
)
self.max_num_seqs = max_num_seqs
def _prepare_inputs(self, is_dummy_run=False) -> None:
"""Prepare the model inputs"""
if envs.ENABLE_V1_KVCACHE_SCHEDULER and not is_dummy_run:
recover_decode_task(
self.share_inputs["stop_flags"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["step_seq_lens_decoder"],
self.share_inputs["block_tables"],
self.share_inputs["is_block_step"],
self.cache_config.block_size,
)
self.forward_meta = xpu_pre_process(
self.share_inputs["input_ids"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs,
use_speculate_method=self.speculative_decoding,
block_size=self.cache_config.block_size,
draft_tokens=self.share_inputs["draft_tokens"] if self.speculative_decoding else None,
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
is_profiling=is_dummy_run,
)
# Update bad tokens len
max_bad_tokens_len = paddle.max(self.share_inputs["bad_tokens_len"])
if self.enable_mm:
self.forward_meta.pos_emb_type = self.share_inputs["pos_emb_type"]
self.forward_meta.attn_backend = self.attn_backends[0]
self.initialize_attention_backend()
if self.pd_disaggregation_mode == "per_chunk" or self.pd_disaggregation_mode == "per_query":
self.forward_meta.kv_signal_sender = self.kv_signal_sender
if (
self.fd_config.scheduler_config.splitwise_role == "mixed"
): # Centralized scenario: the phase is initialized as "prefill" by default. During inference runtime, different types of batches can achieve phase switching at this point.
if_only_decode = self.only_decode()
self.fd_config.model_config.moe_phase.phase = "decode" if if_only_decode else "prefill"
# Get sampling metadata
# TODU(lilujia): sync with GPU
self.sampling_metadata = SamplingMetadata(
temperature=self.share_inputs["temperature"],
top_p=self.share_inputs["top_p"],
top_k=self.share_inputs["top_k"],
top_k_list=self.share_inputs["top_k_list"],
min_p=self.share_inputs["min_p"],
min_p_list=self.share_inputs["min_p_list"],
seed=self.share_inputs["infer_seed"],
step_idx=self.share_inputs["step_idx"],
pre_token_ids=self.share_inputs["pre_ids"],
prompt_ids=self.share_inputs["prompt_ids"],
prompt_lens=self.share_inputs["prompt_lens"],
frequency_penalties=self.share_inputs["frequency_score"],
presence_penalties=self.share_inputs["presence_score"],
repetition_penalties=self.share_inputs["penalty_score"],
min_dec_lens=self.share_inputs["min_dec_len"],
bad_words_token_ids=self.share_inputs["bad_tokens"][:, :max_bad_tokens_len],
eos_token_ids=self.share_inputs["eos_token_id"],
max_num_logprobs=self.max_logprobs if self.enable_logprob else None,
enable_early_stop=self.enable_early_stop,
stop_flags=self.share_inputs["stop_flags"],
temp_scaled_logprobs=self.share_inputs["temp_scaled_logprobs"],
top_p_normalized_logprobs=self.share_inputs["top_p_normalized_logprobs"],
share_inputs=self.share_inputs,
)
def load_model(self) -> None:
"""load or download model"""
logger.info(f"Starting to load model {self.model_config.architectures[0]}")
# 1. Load original model
model_loader = get_model_loader(load_config=self.fd_config.load_config)
self.model = model_loader.load_model(fd_config=self.fd_config)
# 2. Load lora model
# 3. Load drafter model(for speculative decoding)
self._init_speculative_proposer()
def get_model(self) -> nn.Layer:
"""Get current model"""
return self.model
def initialize_attention_backend(self):
"""
Initialize attention meta data
"""
# Initialzie attention meta data
for attn_backend in self.attn_backends:
attn_backend.init_attention_metadata(self.forward_meta)
def initialize_kv_cache(self, profile: bool = False) -> None:
"""
Initialize kv cache
"""
# cache_kvs = {}
max_block_num = self.num_gpu_blocks
# Get kv cache dtype
cache_type = self.model_config.dtype
if (
self.quant_config
and hasattr(self.quant_config, "kv_cache_quant_type")
and self.quant_config.kv_cache_quant_type is not None
):
cache_type = "int8"
# Get kv cache shape
key_cache_shape, value_cache_shape = self.attn_backends[0].get_kv_cache_shape(max_num_blocks=max_block_num)
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
cache_ready_signal_data = np.zeros(shape=[self.parallel_config.tensor_parallel_size], dtype=np.int32)
cache_ready_signal = IPCSignal(
name="cache_ready_signal",
array=cache_ready_signal_data,
dtype=np.int32,
suffix=self.parallel_config.engine_worker_queue_port,
create=False,
)
# Check if gpu runner needs to create kv cache
# 1. During profiling, it creates its own kv cache.
# 2. GPU runner creates kv cache tensor unless p/d disaggregation is enabled.
create_cache_tensor = profile or self.scheduler_config.splitwise_role == "mixed"
if not create_cache_tensor:
logger.info(f"Waiting for cache managers to create kv cache.. {cache_ready_signal.value}")
while cache_ready_signal.value[local_rank] != 1:
time.sleep(1)
logger.info(f"OK! Stop waiting. {cache_ready_signal.value}")
logger.info(f"Initializing kv cache for all layers. {cache_ready_signal.value}")
cache_kvs_list = []
for i in range(self.model_config.num_hidden_layers):
key_cache_name = f"key_caches_{i}_rank{local_rank}.device{self.device_id}"
val_cache_name = f"value_caches_{i}_rank{local_rank}.device{self.device_id}"
if create_cache_tensor:
logger.info(f"..creating kv cache for layer {i}: {key_cache_shape} {value_cache_shape}")
key_cache = paddle.full(shape=key_cache_shape, fill_value=0, dtype=cache_type)
set_data_ipc(key_cache, key_cache_name)
val_cache = paddle.full(shape=value_cache_shape, fill_value=0, dtype=cache_type)
set_data_ipc(val_cache, val_cache_name)
cache_kvs_list.extend([key_cache, val_cache])
else:
logger.info(f"..attaching kv cache for layer {i}: {key_cache_shape} {value_cache_shape}")
key_cache = paddle.empty(shape=[], dtype=cache_type)
key_cache = share_external_data(key_cache, key_cache_name, key_cache_shape, False)
val_cache = paddle.empty(shape=[], dtype=cache_type)
val_cache = share_external_data(val_cache, val_cache_name, value_cache_shape, False)
cache_kvs_list.extend([key_cache, val_cache])
self.share_inputs["caches"] = cache_kvs_list
if not profile and create_cache_tensor:
cache_ready_signal.value[local_rank] = 1
logger.info(f"✅ kv cache is ready! {cache_ready_signal.value}")
paddle.device.xpu.empty_cache()
def initialize_attn_backend(self) -> None:
"""
Initialize attention backends and forward metadata
"""
assert len(self.attn_backends) == 0
# TODO(gongshaotian): Get rank from config
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_size
self.model_config.kv_num_heads = (
int(self.model_config.num_key_value_heads) // self.parallel_config.tensor_parallel_size
)
head_dim = self.model_config.head_dim
if self.speculative_decoding:
# Initialize AttentionBackend buffers
encoder_block_shape_q = 64
decoder_block_shape_q = 16
decoder_step_token_num = self.speculative_config.num_speculative_tokens + 1
decode_max_tile_size = self.max_num_seqs * np.ceil(
(decoder_step_token_num * np.ceil(num_heads / self.model_config.kv_num_heads)) / decoder_block_shape_q
)
group_size = np.ceil(num_heads / self.model_config.kv_num_heads)
encode_max_tile_size = self.scheduler_config.max_num_seqs * np.ceil(
(self.model_config.max_model_len * group_size) / encoder_block_shape_q
)
kv_max_tile_size = self.scheduler_config.max_num_seqs * np.ceil(
self.model_config.max_model_len / self.fd_config.cache_config.block_size
)
self.share_inputs["decoder_batch_ids"] = paddle.full([int(decode_max_tile_size)], 0, dtype="int32")
self.share_inputs["decoder_tile_ids_per_batch"] = paddle.full(
[int(decode_max_tile_size)], 0, dtype="int32"
)
self.share_inputs["decoder_num_blocks_cpu"] = paddle.full([1], 0, dtype="int32").cpu()
# NOTE: (changwenbin) MLA kernel only needs decoder_num_blocks_device in place of GPU tensor,
# adapted to cudagraph.
self.share_inputs["decoder_num_blocks_device"] = paddle.full([1], 0, dtype="int32")
self.share_inputs["decoder_chunk_size_device"] = paddle.full([1], 64, dtype="int32")
self.share_inputs["max_len_tensor_cpu"] = paddle.full([8], 0, dtype="int32").cpu()
self.share_inputs["encoder_batch_ids"] = paddle.full([int(encode_max_tile_size)], 0, dtype="int32")
self.share_inputs["encoder_tile_ids_per_batch"] = paddle.full(
[int(encode_max_tile_size)], 0, dtype="int32"
)
self.share_inputs["encoder_num_blocks_x_cpu"] = paddle.full([1], 0, dtype="int32").cpu()
self.share_inputs["kv_batch_ids"] = paddle.full([int(kv_max_tile_size)], 0, dtype="int32")
self.share_inputs["kv_tile_ids_per_batch"] = paddle.full([int(kv_max_tile_size)], 0, dtype="int32")
self.share_inputs["kv_num_blocks_x_cpu"] = paddle.full([1], 0, dtype="int32").cpu()
self.share_inputs["max_len_kv_cpu"] = paddle.full([1], 0, dtype="int32").cpu()
# Get the attention backend
attn_cls = get_attention_backend()
attn_backend = attn_cls(
self.fd_config,
kv_num_heads=self.model_config.kv_num_heads,
num_heads=num_heads,
head_dim=head_dim,
)
if attn_backend is None:
raise NotImplementedError(
"Attention backend which you specified is not supported, please set FD_ATTENTION_BACKEND correctly."
)
self.attn_backends.append(attn_backend)
def _dummy_prefill_inputs(self, num_tokens: int, batch_size: int):
"""Set dummy prefill inputs to share_inputs"""
full_length = min(num_tokens // batch_size, self.model_config.max_model_len - 10)
input_length = int(full_length - 512)
block_num = (
input_length + self.cache_config.block_size - 1
) // self.cache_config.block_size + self.cache_config.enc_dec_block_num
for i in range(batch_size):
idx = i
self.share_inputs["input_ids"][idx : idx + 1, :input_length] = np.array([5] * input_length)
self.share_inputs["prompt_ids"][idx : idx + 1, :input_length] = np.array([5] * input_length)
self.share_inputs["eos_token_id"][:] = np.array([2], dtype="int64").reshape(-1, 1)
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = input_length
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = input_length
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = input_length
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
self.share_inputs["step_idx"][idx : idx + 1] = 0
self.share_inputs["max_dec_len"][idx : idx + 1] = 10
self.share_inputs["stop_flags"][idx : idx + 1] = False
self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
self.share_inputs["ori_seq_lens_encoder"][idx : idx + 1] = input_length
self.share_inputs["infer_seed"][idx : idx + 1] = random.randint(0, 922337203685477580)
self.share_inputs["encoder_block_lens"][idx : idx + 1] = block_num
self.share_inputs["block_tables"][idx : idx + 1, :block_num] = np.arange(
idx * block_num, (idx + 1) * block_num, 1
)
def _dummy_run(
self,
num_tokens: paddle.Tensor,
batch_size: paddle.Tensor,
in_capturing: bool = False,
) -> paddle.Tensor:
"""
Use dummy inputs to run before formal execution.
Args:
num_tokens: Expected number of tokens generated
"""
self._dummy_prefill_inputs(num_tokens, batch_size)
if self.speculative_method in ["mtp"]:
self.proposer.dummy_prefill_inputs(
num_tokens=num_tokens,
batch_size=batch_size,
expected_decode_len=1,
)
while True:
self.execute_model(is_dummy_run=True)
if int((self.share_inputs["seq_lens_this_time"] > 0).sum()) == 0:
break
def _init_speculative_proposer(self):
"""
Init speculative proposer
"""
if self.speculative_method == "ngram":
# xpu not support ngram proposer now
# self.proposer = NgramProposer(self.fd_config)
self.proposer = None
elif self.speculative_method == "mtp":
self.proposer = MTPProposer(
self.fd_config,
self.get_model(),
self.local_rank,
self.device_id,
self.share_inputs,
)
else:
self.proposer = None
def _set_debug_level(
self, debug_level: int = 0x1, model_forward_batch: Optional[List[Request]] = None, is_dummy_run: bool = False
) -> None:
"""
Set debug level for XPU: 0x1, 0xA1, 0x1B1
"""
request_num = 0 if model_forward_batch is None else len(model_forward_batch)
if debug_level == 0 or request_num == 0 or is_dummy_run:
paddle.device.xpu.set_debug_level(0)
return
if self.parallel_config.use_ep:
request_num = paddle.to_tensor(request_num, dtype="int32")
paddle.distributed.all_reduce(request_num, group=self.parallel_config.ep_group)
logger.info(f"local_rank: {self.local_rank}, request_num: {request_num.item()}")
if request_num.item() > 0:
paddle.device.xpu.set_debug_level(debug_level)
else:
paddle.device.xpu.set_debug_level(debug_level)
def capture_model(self) -> None:
"""
Trigger CUDA Graph capture for all shapes in 'CudaGraphConfig.cudagraph_capture_sizes'
"""
logger.warn("XPU not support cuda graph currently")
pass
@sot_warmup_guard(True)
def sot_warmup(self) -> None:
start_time = time.perf_counter()
for batch_size in self.sot_warmup_sizes:
self._dummy_run(
num_tokens=self.parallel_config.max_num_batched_tokens,
batch_size=batch_size,
)
logger.info(f"SOT warmup the model with the batch size:{batch_size}")
logger.info(f"SOT warmup took {time.perf_counter() - start_time} seconds")
def execute_model(
self,
model_forward_batch: Optional[List[Request]] = None,
num_running_requests: int = None,
is_dummy_run: bool = False,
) -> Optional[ModelRunnerOutput]:
"""
The Entrance of model execute.
Args:
model_forward_batch: 'Request' contains information related to prompt and is an abstract
class at the server level, which is too granular for ModelRunner.
We plan to replace it with 'ModelForwardBatch'.
num_running_requests: batch_size
intermediate_tensors:
"""
# 0. set debug level
# self._set_debug_level(0x1, model_forward_batch, is_dummy_run)
if self.pd_disaggregation_mode == "per_chunk" or self.pd_disaggregation_mode == "per_query":
self.kv_signal_sender = create_kv_signal_sender()
# 1. Prepare inputs of model and decoder.
self._prepare_inputs(is_dummy_run=is_dummy_run)
# NOTE(wufeisheng): If `not_need_stop`` is False, it means the current worker is in an idle state.
# This logic is not used in TP (Tensor Parallelism) mode. However, in EP (Expert Parallelism) mode,
# when there is data on other runner, the current runner is required to execute part of the model.
if not self.not_need_stop() and not is_dummy_run:
self._execute_empty_input(self.forward_meta)
return None
# 2. Padding inputs for cuda grph
# 3. Execute model
if self.enable_mm:
model_output = self.model(
self.share_inputs["ids_remove_padding"], self.share_inputs["image_features"], self.forward_meta
)
else:
model_output = self.model(
ids_remove_padding=self.share_inputs["ids_remove_padding"],
forward_meta=self.forward_meta,
)
hidden_states = xpu_process_output(
model_output, self.share_inputs["cum_offsets"], self.forward_meta, self.share_inputs
)
# 4. Compute logits, Sample
logits = self.model.compute_logits(hidden_states)
sampler_output = None
if not self.speculative_decoding:
sampler_output = self.sampler(logits, self.sampling_metadata)
else:
self.sampler(
logits,
self.sampling_metadata,
self.model_config.max_model_len,
self.share_inputs,
)
# 5. Speculative decode
# 6. Post Process
model_output_data = ModelOutputData(
next_tokens=self.share_inputs["next_tokens"],
stop_flags=self.share_inputs["stop_flags"],
step_idx=self.share_inputs["step_idx"],
max_dec_len=self.share_inputs["max_dec_len"],
pre_ids=self.share_inputs["pre_ids"],
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
eos_token_id=self.share_inputs["eos_token_id"],
not_need_stop=self.share_inputs["not_need_stop"],
input_ids=self.share_inputs["input_ids"],
stop_nums=self.share_inputs["stop_nums"],
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
is_block_step=self.share_inputs["is_block_step"],
# 投机解码
full_hidden_states=model_output if self.speculative_decoding else None,
msg_queue_id=self.parallel_config.msg_queue_id,
mp_rank=self.local_rank,
use_ep=self.parallel_config.use_ep,
draft_tokens=(self.share_inputs["draft_tokens"] if self.speculative_decoding else None),
actual_draft_token_num=(
self.share_inputs["actual_draft_token_num"] if self.speculative_decoding else None
),
accept_tokens=(self.share_inputs["accept_tokens"] if self.speculative_decoding else None),
accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None),
stop_token_ids=self.share_inputs["stop_seqs"],
stop_seqs_len=self.share_inputs["stop_seqs_len"],
)
if self.speculative_decoding:
# base model post process
xpu_post_process_specualate(model_output_data, False, is_dummy_run)
else:
xpu_post_process_normal(
sampler_output=sampler_output,
model_output=model_output_data,
share_inputs=self.share_inputs,
block_size=self.cache_config.block_size,
skip_save_output=is_dummy_run,
think_end_id=self.model_config.think_end_id,
line_break_id=self.model_config.line_break_id,
)
# draft model propose
if self.speculative_method == "mtp":
self.proposer.run(full_hidden_states=model_output)
# 7. Updata 'infer_seed' and step_paddle()
self.share_inputs["infer_seed"].add_(self.infer_seed_increment)
self.share_inputs["infer_seed"][:] %= self.MAX_INFER_SEED
step_xpu(
self.share_inputs,
self.cache_config.block_size,
self.cache_config.enc_dec_block_num,
self.speculative_decoding,
self.speculative_config.num_speculative_tokens,
)
if self.pd_disaggregation_mode == "per_chunk" or self.pd_disaggregation_mode == "per_query":
destroy_kv_signal_sender(self.kv_signal_sender)
return None
def _execute_empty_input(self, forward_meta) -> None:
"""
In certain scenarios, such as during EP,
the runner needs to execute partial modules of the model without input data.
This requires the model to implement the `empty_input_forward` method.
"""
if hasattr(self.model, "empty_input_forward"):
self.model.empty_input_forward(forward_meta)
else:
raise ValueError(f"{type(self.model)} has no attribute 'empty_input_forward")
@profile_run_guard(True)
def profile_run(self) -> None:
"""Execute a forward pass with dummy inputs to profile the memory usage of the model"""
self.num_gpu_blocks = self.cache_config.total_block_num
self.initialize_kv_cache(profile=True)
if self.speculative_method in ["mtp"]:
self.proposer.initialize_kv_cache(main_model_num_blocks=self.num_gpu_blocks, profile=True)
self._dummy_run(
num_tokens=int(self.scheduler_config.max_num_batched_tokens),
batch_size=min(self.scheduler_config.max_num_seqs, 1),
)
def update_share_input_block_num(self, num_gpu_blocks: int) -> None:
"""
Set a globally unified block number and update the model's shared input.
Args:
num_gpu_blocks:
"""
self.num_gpu_blocks = num_gpu_blocks
# Reset block table and kv cache with global block num
self.initialize_kv_cache()
# Reset free list
free_list = list(
range(
self.num_gpu_blocks - 1,
int(self.num_gpu_blocks * self.cache_config.kv_cache_ratio) - 1,
-1,
)
)
self.free_list_len = len(free_list)
self.share_inputs.update(
{
"free_list": paddle.to_tensor(free_list, dtype="int32"),
"free_list_len": paddle.full([1], self.free_list_len, dtype="int32"),
}
)
def clear_block_table(self) -> None:
"""
Clear the block tables and kv cache after profiling.
"""
if hasattr(self.share_inputs, "caches"):
del self.share_inputs["caches"]
if self.forward_meta is not None:
del self.forward_meta.caches
paddle.device.xpu.empty_cache()
def cal_theortical_kvcache(self):
"""
Calculate the total block memory required at the model level
TODO(gongshaotian): Move to Attention Backend
"""
"""
Byte of dtype:
- default(bf16): 2
- cache_int8: 1
- cache_int4:
"""
cache_quant_dtype = None
if (
self.quant_config
and hasattr(self.quant_config, "kv_cache_quant_type")
and self.quant_config.kv_cache_quant_type is not None
):
cache_quant_dtype = self.quant_config.kv_cache_quant_type
if cache_quant_dtype is not None: # int8, int8_zp, fp8, fp8_zp
byte_of_dtype = 1
else: # default
byte_of_dtype = 2
hidden_dim = self.model_config.head_dim * self.model_config.kv_num_heads
num_layers = self.model_config.num_hidden_layers
required_memory = byte_of_dtype * 2 * (self.cache_config.block_size * hidden_dim) * num_layers # k + v
return required_memory
def not_need_stop(self) -> bool:
"""Stop decoding if the tensor meets the termination condition"""
return self.share_inputs["not_need_stop"][0]
def clear_cache(self):
"""Clear cached data from shared inputs and forward metadata"""
self.share_inputs.pop("caches", None)
if self.forward_meta is not None:
self.forward_meta.clear_caches()
def _init_image_preprocess(self) -> None:
processor = DataProcessor(
tokenizer_name=self.model_config.model,
image_preprocessor_name=str(self.model_config.model),
)
processor.eval()
image_preprocess = processor.image_preprocessor
image_preprocess.image_mean_tensor = paddle.to_tensor(image_preprocess.image_mean, dtype="float32").reshape(
[1, 3, 1, 1]
)
image_preprocess.image_std_tensor = paddle.to_tensor(image_preprocess.image_std, dtype="float32").reshape(
[1, 3, 1, 1]
)
image_preprocess.rescale_factor = paddle.to_tensor(image_preprocess.rescale_factor, dtype="float32")
image_preprocess.image_mean_tensor = image_preprocess.image_mean_tensor.squeeze([-2, -1]).repeat_interleave(
self.model_config.vision_config.patch_size**2 * 1, -1
)
image_preprocess.image_std_tensor = image_preprocess.image_std_tensor.squeeze([-2, -1]).repeat_interleave(
self.model_config.vision_config.patch_size**2 * 1, -1
)
self.image_preprocess = image_preprocess
def _preprocess_mm_task(self, one: dict) -> None:
"""process batch"""
input_ids = one["input_ids"][np.newaxis, :]
input_ids = paddle.to_tensor(input_ids, dtype=paddle.int64)
token_type_ids = one["token_type_ids"][np.newaxis, :]
token_type_ids = paddle.to_tensor(token_type_ids, dtype=paddle.int64)
if one["images"] is not None:
image_type_ids = one["image_type_ids"][np.newaxis, :]
images = one["images"]
image_type_ids = paddle.to_tensor(image_type_ids, dtype=paddle.int64)
images = paddle.to_tensor(images, dtype="uint8")
grid_thw = paddle.to_tensor(one["grid_thw"], dtype="int64")
else:
image_type_ids = None
images = None
grid_thw = None
if one["position_ids"] is not None:
position_ids = paddle.to_tensor(one["position_ids"], dtype="int64")
else:
position_ids = None
result = dict(
input_ids=input_ids,
image_type_ids=image_type_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
grid_thw=grid_thw,
images=images,
)
return result
def extract_vision_features_ernie(self, inputs: list[paddle.Tensor]) -> paddle.Tensor:
assert inputs["images"] is not None
grid_thw = inputs["grid_thw"]
# ernie-vl has images norm
images = inputs["images"].cast("float32")
images = self.image_preprocess.rescale_factor * images - self.image_preprocess.image_mean_tensor
images = images / self.image_preprocess.image_std_tensor
images = images.cast("bfloat16")
token_type_ids = inputs["token_type_ids"]
token_type_ids_w_video = token_type_ids
input_ids = inputs["input_ids"]
# convert to img patch id
image_mask = input_ids == self.model_config.im_patch_id
image_type_ids = inputs["image_type_ids"]
with paddle.amp.auto_cast(
True,
custom_black_list=self.amp_black,
custom_white_list=self.amp_white,
level="O2",
dtype=self.model_config.dtype,
):
image_features = self.model.vision_model.extract_feature(images, grid_thw)
if self.parallel_config.tensor_parallel_size > 1:
S, C = image_features.shape
image_features = image_features.reshape([-1, C * self.model_config.spatial_conv_size**2])
image_features = ScatterOp.apply(image_features, axis=-1) # mp 切 Fea
image_features = image_features.reshape([S, -1])
# ernie-vl has resampler_model
image_features = self.model.resampler_model(
image_features,
image_mask,
token_type_ids_w_video,
image_type_ids,
grid_thw,
)
return image_features
def extract_vision_features_paddleocr(self, inputs: list[paddle.Tensor]) -> paddle.Tensor:
if envs.FD_ENABLE_MAX_PREFILL:
inputs["vit_position_ids_lst"] = np.concatenate(inputs["vit_position_ids_lst"])
images = paddle.concat(inputs["images_lst"]).cast("bfloat16")
grid_thw = paddle.to_tensor(inputs["grid_thw_lst"], dtype="int64")
position_ids = paddle.to_tensor(inputs["vit_position_ids_lst"], dtype="int64")
cu_seqlens = paddle.cumsum(paddle.to_tensor(inputs["cu_seqlens"])).cast("int32")
else:
assert inputs["images"] is not None
grid_thw = inputs["grid_thw"]
images = inputs["images"]
position_ids = []
cu_seqlens = [0]
for idx, thw in enumerate(grid_thw):
numel = np.prod(np.array(thw))
position_ids.append(paddle.arange(numel) % np.prod(thw[1:]))
cu_seqlens.append(cu_seqlens[-1] + numel)
position_ids = paddle.concat(position_ids, axis=0).to(images.place)
cu_seqlens = paddle.to_tensor(cu_seqlens, dtype=paddle.int32).to(images.place)
with paddle.amp.auto_cast(
True,
custom_black_list=self.amp_black,
custom_white_list=self.amp_white,
level="O2",
dtype=self.model_config.dtype,
):
image_features = self.model.visual(
pixel_values=images,
image_grid_thw=grid_thw,
position_ids=position_ids,
interpolate_pos_encoding=True,
cu_seqlens=cu_seqlens,
use_rope=True,
window_size=-1,
)
image_features = self.model.projector(image_features, grid_thw)
image_features = paddle.concat(image_features, axis=0)
return image_features
@paddle.no_grad()
def extract_vision_features(self, inputs: list[paddle.Tensor]) -> paddle.Tensor:
"""extract_vision_features"""
if "ernie" in self.model_config.model_type:
return self.extract_vision_features_ernie(inputs)
elif "paddleocr" in self.model_config.model_type:
return self.extract_vision_features_paddleocr(inputs)
else:
raise ValueError(f"multiple modalities model {self.model_config.model_type} is not supported")
@paddle.no_grad()
def prepare_rope3d(
self, position_ids: paddle.Tensor, max_len_lst: list[int], cumsum_seqlens: list[int]
) -> list[paddle.Tensor]:
"""prepare_rope3d"""
rope_emb_lst = get_rope_3d(
position_ids=position_ids,
rotary_dim=self.model_config.head_dim,
partial_rotary_factor=1.0,
base=self.model_config.rope_theta,
max_position=self.model_config.max_model_len,
freq_allocation=getattr(self.model_config, "freq_allocation", 20),
model_type=self.model_config.model_type,
max_len_lst=max_len_lst,
cumsum_seqlens=cumsum_seqlens,
)
return rope_emb_lst