Files
FastDeploy/fastdeploy/reasoning/ernie_45_vl_thinking_reasoning_parser.py
2025-11-05 11:27:30 +08:00

139 lines
5.7 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from collections.abc import Sequence
from typing import Optional, Union
from fastdeploy.entrypoints.openai.protocol import ChatCompletionRequest, DeltaMessage
from fastdeploy.reasoning import ReasoningParser, ReasoningParserManager
@ReasoningParserManager.register_module("ernie-45-vl-thinking")
class Ernie45VLThinkingReasoningParser(ReasoningParser):
"""
Reasoning parser for ernie_vl model.
The ernie_vl model uses ...</think>... tokens to denote reasoning text
within its output. The model provides a strict switch to disable reasoning
output via the 'enable_thinking=False' parameter. This parser extracts the
reasoning content enclosed by <think> and </think> tokens from the model's
output.
"""
def __init__(self, tokenizer):
super().__init__(tokenizer)
self.think_end_token = "</think>"
self.tool_begin_token = "<tool_call>"
if not self.model_tokenizer:
raise ValueError(
"The model tokenizer must be passed to the ReasoningParser " "constructor during construction."
)
self.think_end_token_id = self.vocab.get(self.think_end_token)
self.tool_begin_token_id = self.vocab.get(self.tool_begin_token)
if self.tool_begin_token_id is None:
self.tool_begin_token_id = -1
if self.think_end_token_id is None:
raise RuntimeError("Test reasoning parser could not locate think end tokens in the tokenizer!")
def is_reasoning_end(self, input_ids: list[int]) -> bool:
return self.think_end_token_id in input_ids
def extract_reasoning_content_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
) -> Union[DeltaMessage, None]:
"""
Extract reasoning content from a delta message.
Handles streaming output where previous + delta = current.
Uses token IDs for faster processing.
For text abc</think>xyz:
- 'abc' goes to reasoning_content
- 'xyz' goes to content
"""
if self.think_end_token not in current_text:
return DeltaMessage(reasoning_content=delta_text)
# Skip single special tokens
if len(delta_token_ids) == 1 and delta_token_ids[0] == self.think_end_token_id:
return None
if self._is_with_tool(current_text=current_text, current_token_ids=current_token_ids):
if self.think_end_token in delta_text:
think_begin = delta_text.find(self.think_end_token)
reasoning_content = delta_text[:think_begin]
return DeltaMessage(reasoning_content=reasoning_content)
return None
if self.think_end_token in delta_text:
reasoning_content, _, content = delta_text.partition(self.think_end_token)
striped_content = content.strip("\n")
if len(striped_content) == 0:
return DeltaMessage(reasoning_content=reasoning_content) if reasoning_content else None
return (
DeltaMessage(reasoning_content=reasoning_content, content=content)
if reasoning_content
else DeltaMessage(content=content)
)
think_end = current_text.find(self.think_end_token) + len(self.think_end_token)
suffix = current_text[think_end:]
striped_suffix = suffix.strip("\n")
if len(striped_suffix) == 0:
return None
return DeltaMessage(content=delta_text)
def extract_reasoning_content(
self, model_output: str, request: ChatCompletionRequest
) -> tuple[Optional[str], Optional[str]]:
"""
Extract reasoning content from the model output.
For text abc</think>xyz:
- 'abc' goes to reasoning_content
- 'xyz' goes to content
Returns:
tuple[Optional[str], Optional[str]]: reasoning content and content
"""
# Check if the model output contains the </think> tokens.
if self.think_end_token not in model_output:
return model_output, ""
reasoning_content, _, content = model_output.partition(self.think_end_token)
if self.tool_begin_token in content:
prefix, _, _ = content.partition(self.tool_begin_token)
prefix_strip = prefix.lstrip("\n")
if len(prefix_strip) > 0:
return reasoning_content, content
return reasoning_content, ""
return reasoning_content, content
def _is_with_tool(self, current_text: str, current_token_ids: Sequence[int]) -> bool:
think_end_index = current_text.find(self.think_end_token)
think_end = think_end_index + len(self.think_end_token)
middle_str = current_text[think_end:]
if self.tool_begin_token_id in current_token_ids:
prefix, _, _ = middle_str.partition(self.tool_begin_token)
striped_prefix = prefix.strip("\n")
if len(striped_prefix) > 0:
return False
return True
return False