mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
139 lines
5.7 KiB
Python
139 lines
5.7 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from collections.abc import Sequence
|
|
from typing import Optional, Union
|
|
|
|
from fastdeploy.entrypoints.openai.protocol import ChatCompletionRequest, DeltaMessage
|
|
from fastdeploy.reasoning import ReasoningParser, ReasoningParserManager
|
|
|
|
|
|
@ReasoningParserManager.register_module("ernie-45-vl-thinking")
|
|
class Ernie45VLThinkingReasoningParser(ReasoningParser):
|
|
"""
|
|
Reasoning parser for ernie_vl model.
|
|
|
|
The ernie_vl model uses ...</think>... tokens to denote reasoning text
|
|
within its output. The model provides a strict switch to disable reasoning
|
|
output via the 'enable_thinking=False' parameter. This parser extracts the
|
|
reasoning content enclosed by <think> and </think> tokens from the model's
|
|
output.
|
|
"""
|
|
|
|
def __init__(self, tokenizer):
|
|
super().__init__(tokenizer)
|
|
self.think_end_token = "</think>"
|
|
self.tool_begin_token = "<tool_call>"
|
|
|
|
if not self.model_tokenizer:
|
|
raise ValueError(
|
|
"The model tokenizer must be passed to the ReasoningParser " "constructor during construction."
|
|
)
|
|
|
|
self.think_end_token_id = self.vocab.get(self.think_end_token)
|
|
self.tool_begin_token_id = self.vocab.get(self.tool_begin_token)
|
|
if self.tool_begin_token_id is None:
|
|
self.tool_begin_token_id = -1
|
|
|
|
if self.think_end_token_id is None:
|
|
raise RuntimeError("Test reasoning parser could not locate think end tokens in the tokenizer!")
|
|
|
|
def is_reasoning_end(self, input_ids: list[int]) -> bool:
|
|
return self.think_end_token_id in input_ids
|
|
|
|
def extract_reasoning_content_streaming(
|
|
self,
|
|
previous_text: str,
|
|
current_text: str,
|
|
delta_text: str,
|
|
previous_token_ids: Sequence[int],
|
|
current_token_ids: Sequence[int],
|
|
delta_token_ids: Sequence[int],
|
|
) -> Union[DeltaMessage, None]:
|
|
"""
|
|
Extract reasoning content from a delta message.
|
|
Handles streaming output where previous + delta = current.
|
|
Uses token IDs for faster processing.
|
|
For text abc</think>xyz:
|
|
- 'abc' goes to reasoning_content
|
|
- 'xyz' goes to content
|
|
"""
|
|
if self.think_end_token not in current_text:
|
|
return DeltaMessage(reasoning_content=delta_text)
|
|
# Skip single special tokens
|
|
if len(delta_token_ids) == 1 and delta_token_ids[0] == self.think_end_token_id:
|
|
return None
|
|
if self._is_with_tool(current_text=current_text, current_token_ids=current_token_ids):
|
|
if self.think_end_token in delta_text:
|
|
think_begin = delta_text.find(self.think_end_token)
|
|
reasoning_content = delta_text[:think_begin]
|
|
return DeltaMessage(reasoning_content=reasoning_content)
|
|
return None
|
|
if self.think_end_token in delta_text:
|
|
reasoning_content, _, content = delta_text.partition(self.think_end_token)
|
|
striped_content = content.strip("\n")
|
|
if len(striped_content) == 0:
|
|
return DeltaMessage(reasoning_content=reasoning_content) if reasoning_content else None
|
|
return (
|
|
DeltaMessage(reasoning_content=reasoning_content, content=content)
|
|
if reasoning_content
|
|
else DeltaMessage(content=content)
|
|
)
|
|
think_end = current_text.find(self.think_end_token) + len(self.think_end_token)
|
|
suffix = current_text[think_end:]
|
|
striped_suffix = suffix.strip("\n")
|
|
if len(striped_suffix) == 0:
|
|
return None
|
|
return DeltaMessage(content=delta_text)
|
|
|
|
def extract_reasoning_content(
|
|
self, model_output: str, request: ChatCompletionRequest
|
|
) -> tuple[Optional[str], Optional[str]]:
|
|
"""
|
|
Extract reasoning content from the model output.
|
|
|
|
For text abc</think>xyz:
|
|
- 'abc' goes to reasoning_content
|
|
- 'xyz' goes to content
|
|
|
|
Returns:
|
|
tuple[Optional[str], Optional[str]]: reasoning content and content
|
|
"""
|
|
|
|
# Check if the model output contains the </think> tokens.
|
|
if self.think_end_token not in model_output:
|
|
return model_output, ""
|
|
reasoning_content, _, content = model_output.partition(self.think_end_token)
|
|
if self.tool_begin_token in content:
|
|
prefix, _, _ = content.partition(self.tool_begin_token)
|
|
prefix_strip = prefix.lstrip("\n")
|
|
if len(prefix_strip) > 0:
|
|
return reasoning_content, content
|
|
return reasoning_content, ""
|
|
return reasoning_content, content
|
|
|
|
def _is_with_tool(self, current_text: str, current_token_ids: Sequence[int]) -> bool:
|
|
think_end_index = current_text.find(self.think_end_token)
|
|
think_end = think_end_index + len(self.think_end_token)
|
|
middle_str = current_text[think_end:]
|
|
if self.tool_begin_token_id in current_token_ids:
|
|
prefix, _, _ = middle_str.partition(self.tool_begin_token)
|
|
striped_prefix = prefix.strip("\n")
|
|
if len(striped_prefix) > 0:
|
|
return False
|
|
return True
|
|
return False
|