mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
437 lines
16 KiB
Python
437 lines
16 KiB
Python
"""
|
||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
|
||
import ctypes
|
||
import os
|
||
import time
|
||
import traceback
|
||
from typing import List, Tuple
|
||
|
||
import numpy as np
|
||
import paddle
|
||
|
||
try:
|
||
from cuda import cudart
|
||
except ImportError:
|
||
cudart = None
|
||
|
||
from fastdeploy.config import EPLBConfig
|
||
|
||
REARRANGE_EXPERT_MAGIC_NUM = 147183647
|
||
REARRANGE_ORIGINATOR_EP_RANK = 0
|
||
CHECK_TIME_INTERNAL = 3
|
||
HTTP_RETRY_NUM = 5
|
||
CHECK_TIMEOUT = 120
|
||
|
||
libc = ctypes.CDLL(None)
|
||
|
||
libc.mmap.argtypes = [
|
||
ctypes.c_void_p, # void *addr
|
||
ctypes.c_size_t, # size_t length
|
||
ctypes.c_int, # int prot
|
||
ctypes.c_int, # int flags
|
||
ctypes.c_int, # int fd
|
||
ctypes.c_size_t, # off_t offset
|
||
]
|
||
libc.mmap.restype = ctypes.c_void_p
|
||
libc.munmap.argtypes = [ctypes.c_void_p, ctypes.c_size_t]
|
||
libc.munmap.restype = ctypes.c_int
|
||
|
||
PROT_READ = 0x1
|
||
PROT_WRITE = 0x2
|
||
MAP_SHARED = 0x01
|
||
MAP_ANONYMOUS = 0x20
|
||
MAP_FAILED = -1
|
||
|
||
G = 1024**3
|
||
TOTAL_MODEL_SIZE = 350
|
||
MAIN_MODEL_REDUNDANT_SHM_SIZE = 5
|
||
|
||
MODEL_MAIN_NAME = "eplb_main"
|
||
|
||
|
||
def create_mmap(model_name: List, ep_rank: int, ep_size: int, shm_uuid: str, eplb_config: EPLBConfig, logger=None):
|
||
"""create_mmap"""
|
||
flags = MAP_SHARED
|
||
prot = PROT_READ | PROT_WRITE
|
||
|
||
main_size = 0
|
||
if eplb_config.redundant_expert_async_load_model_shmem_size_gb == 0:
|
||
main_size = TOTAL_MODEL_SIZE // ep_size
|
||
else:
|
||
main_size = eplb_config.redundant_expert_async_load_model_shmem_size_gb
|
||
main_size = main_size * G
|
||
|
||
mmap_infos = {}
|
||
for name in model_name:
|
||
expert_weight_file = f"/dev/shm/{name}_rank_{ep_rank}_expert_weight_{shm_uuid}"
|
||
shm_size = main_size
|
||
|
||
if not os.path.isfile(expert_weight_file):
|
||
open(expert_weight_file, "wb").close()
|
||
shm_fd = os.open(expert_weight_file, os.O_RDWR)
|
||
os.ftruncate(shm_fd, shm_size)
|
||
if logger is not None:
|
||
logger.info(f"redundant_expert: create_mmap file {expert_weight_file}, fd {shm_fd}, size {shm_size}")
|
||
|
||
shm_ptr = libc.mmap(0, ctypes.c_size_t(shm_size), prot, flags, shm_fd, 0)
|
||
if shm_ptr == MAP_FAILED:
|
||
raise OSError(f"redundant_expert: mmap {expert_weight_file} failed: {ctypes.get_errno()}")
|
||
|
||
shm_ptr = ctypes.cast(shm_ptr, ctypes.POINTER(ctypes.c_int8))
|
||
addr = ctypes.addressof(shm_ptr.contents)
|
||
|
||
if cudart is None:
|
||
raise ImportError(
|
||
"cuda-python not installed. Install the version matching your CUDA toolkit:\n"
|
||
" CUDA 12.x → pip install cuda-python==12.*\n"
|
||
)
|
||
|
||
# Register memory with CUDA
|
||
(ret,) = cudart.cudaHostRegister(addr, shm_size, 0)
|
||
if ret != cudart.cudaError_t.cudaSuccess:
|
||
raise RuntimeError(
|
||
f"cudaHostRegister failed: {cudart.cudaGetErrorString(ret)}, "
|
||
f" address {hex(addr)} size {shm_size}, ret: {ret}"
|
||
)
|
||
|
||
mmap_infos[name] = shm_ptr
|
||
|
||
return mmap_infos
|
||
|
||
|
||
def save_tensor_to_shm_mem(cached_weights, file_path, logger=None):
|
||
"""save_tensor_to_shm_mem"""
|
||
tensor_infos = []
|
||
offset = 0
|
||
if not os.path.exists(file_path):
|
||
raise OSError("File is not exist")
|
||
|
||
shm_size = os.path.getsize(file_path)
|
||
|
||
for name, w in cached_weights:
|
||
size = w.numel().item() * w.element_size()
|
||
# logger.info(f"redundant_expert: save tensor to {name} offset: {offset} size: {size}")
|
||
w_ptr = ctypes.string_at(w.data_ptr(), size)
|
||
with open(file_path, "r+b") as file:
|
||
file.seek(offset)
|
||
if offset + size > shm_size:
|
||
raise IOError(
|
||
f"redundant_expert: Exceeded {file_path} file's size. "
|
||
+ "Should set a bigger value using env variable."
|
||
)
|
||
n = file.write(w_ptr)
|
||
assert n == size
|
||
tensor_infos.append((name, offset, size, w.shape, w.dtype))
|
||
|
||
offset += size
|
||
|
||
sz = offset / 1024 / 1024 / 1024
|
||
if logger is not None:
|
||
logger.info(f"redundant_expert: save_tensor_to_shm_mem success. file {file_path} size {sz}G")
|
||
|
||
return tensor_infos
|
||
|
||
|
||
def load_tensor_from_shm_mem(tensor_infos, shm_ptr, logger=None):
|
||
"""load_tensor_from_shm_mem"""
|
||
# weights_dict = {}
|
||
weights_dict = []
|
||
for name, offset, size, shape, dtype in tensor_infos:
|
||
# 计算共享内存中张量的地址
|
||
w_addr = ctypes.cast(shm_ptr, ctypes.c_void_p).value + offset
|
||
w_ptr = ctypes.cast(w_addr, ctypes.POINTER(ctypes.c_byte))
|
||
# 先读取为字节数组,再通过视图转换成适当类型
|
||
np_array = np.ctypeslib.as_array(w_ptr, shape=(size,))
|
||
|
||
if dtype == paddle.float32:
|
||
tmp = np_array.view(np.float32)
|
||
tensor = paddle.Tensor(tmp, dtype=paddle.float32, place=paddle.CPUPlace(), zero_copy=True)
|
||
elif dtype == paddle.uint8:
|
||
tmp = np_array.view(np.uint8)
|
||
tensor = paddle.Tensor(tmp, dtype=paddle.uint8, place=paddle.CPUPlace(), zero_copy=True)
|
||
elif dtype == paddle.int8:
|
||
tmp = np_array.view(np.int8)
|
||
tensor = paddle.Tensor(tmp, dtype=paddle.int8, place=paddle.CPUPlace(), zero_copy=True)
|
||
elif dtype == paddle.bfloat16:
|
||
# NumPy 不支持 bfloat16,因此先以 uint16 读取原始数据,再用 Paddle cast 为 bfloat16
|
||
tmp = np_array.view(np.uint16)
|
||
tensor = paddle.Tensor(tmp, dtype=paddle.bfloat16, place=paddle.CPUPlace(), zero_copy=True)
|
||
elif dtype == paddle.float8_e4m3fn:
|
||
tmp = np_array.view(np.uint8)
|
||
tensor = paddle.Tensor(tmp, dtype=paddle.float8_e4m3fn, place=paddle.CPUPlace(), zero_copy=True)
|
||
else:
|
||
raise TypeError(f"Unsupported dtype: {dtype}")
|
||
|
||
assert w_addr == tensor.data_ptr()
|
||
# weights_dict[name] = tensor.view(shape)
|
||
weights_dict.append((name, tensor.view(shape)))
|
||
|
||
if logger is not None:
|
||
logger.info("redundant_expert: load_tensor_from_shm_mem succ")
|
||
return weights_dict
|
||
|
||
|
||
class AsyncEPLoader(object):
|
||
"""Aynsc Expert loader"""
|
||
|
||
def __init__(
|
||
self,
|
||
model_dir,
|
||
eplb_config,
|
||
rank=8,
|
||
expert_per_rank=8,
|
||
moe_layer_start_index=3,
|
||
moe_quant_type="",
|
||
logger=None,
|
||
):
|
||
"""
|
||
__init__
|
||
"""
|
||
self.model_path = model_dir
|
||
self.eplb_config = eplb_config
|
||
|
||
self.expert_per_rank = expert_per_rank
|
||
self.moe_layer_start_index = moe_layer_start_index
|
||
self.ep_rank = rank
|
||
self.moe_quant_type = moe_quant_type
|
||
|
||
self.old_model_ep_rank_to_expert_id_list = None
|
||
self.new_model_ep_rank_to_expert_id_list = None
|
||
|
||
self.cached_weights = []
|
||
# self.state_dicts = {}
|
||
self.moe_file_names = []
|
||
|
||
self.logger = logger
|
||
|
||
def reset(self):
|
||
"""
|
||
reset
|
||
"""
|
||
self.old_model_ep_rank_to_expert_id_list = None
|
||
self.new_model_ep_rank_to_expert_id_list = None
|
||
self.cached_weights = []
|
||
self.moe_file_names = []
|
||
|
||
def load_experts_weight_from_disk(self):
|
||
"""
|
||
return value: (all_succ whether_load_weight exist_fatal_error message),
|
||
exist_fatal_error means all rank need restart
|
||
"""
|
||
ep_rank = self.ep_rank
|
||
start_idx = ep_rank * self.expert_per_rank
|
||
end_idx = start_idx + self.expert_per_rank
|
||
try:
|
||
old_expert_ids_all = self.old_model_ep_rank_to_expert_id_list[:, start_idx:end_idx]
|
||
new_expert_ids_all = self.new_model_ep_rank_to_expert_id_list[:, start_idx:end_idx]
|
||
need_to_reload = list()
|
||
for layer_id in range(len(old_expert_ids_all)):
|
||
if layer_id < self.moe_layer_start_index:
|
||
continue
|
||
new_expert_ids = new_expert_ids_all[layer_id]
|
||
old_expert_ids = old_expert_ids_all[layer_id]
|
||
if len(new_expert_ids) != len(old_expert_ids):
|
||
message = f"redundant_expert: new_expert_ids length not equal to old_expert_ids \
|
||
length layer_id: {layer_id}"
|
||
# this is very dangerous and unepxpected, should be fixed
|
||
return False, message
|
||
# TODO: 按需加载,过滤重复专家
|
||
self.logger.info(
|
||
f"redundant_expert: rank {ep_rank} layer {layer_id} old_experts {old_expert_ids}"
|
||
+ f" new_experts {new_expert_ids}"
|
||
)
|
||
need_to_reload.extend([(layer_id, expert_id) for expert_id in new_expert_ids])
|
||
|
||
succ = True
|
||
message = ""
|
||
if len(need_to_reload) > 0:
|
||
if self.eplb_config.model_use_safetensors:
|
||
succ, message = self.load_safetensor_fp8_from_disk(need_to_reload)
|
||
else:
|
||
succ, message = self.load_weight_bf16_from_disk(need_to_reload)
|
||
if not succ:
|
||
self.logger.info(
|
||
f"redundant_expert: load_experts_weight_from_disk fail. rank {ep_rank}, error: {message}"
|
||
)
|
||
new_message = f"redundant_expert: load_experts_weight_from_disk fail. rank {ep_rank}, error: {message}"
|
||
return False, new_message
|
||
self.logger.info(f"redundant_expert: load_experts_weight_from_disk success. rank {ep_rank}")
|
||
return True, "redundant_expert: load_experts_weight_from_disk success"
|
||
except Exception as e:
|
||
message = f"redundant_expert: Failed to load_experts_weight_from_disk ep_rank {ep_rank} excep: {e}"
|
||
error_message = traceback.format_exc()
|
||
self.logger.error(f"redundant_expert: message: {message} traceback: {error_message}")
|
||
return False, message
|
||
|
||
def load_weight_bf16_from_disk(self, need_to_reload: List[Tuple[int, int]]):
|
||
"""load_weight_bf16_from_disk"""
|
||
try:
|
||
ckpt_up_gate_proj_name = "up_gate_proj"
|
||
ckpt_down_proj_name = "down_proj"
|
||
for layer_id, expert_id in need_to_reload:
|
||
for weight_name in [ckpt_up_gate_proj_name, ckpt_down_proj_name]:
|
||
ckpt_file_name = f"ernie.layers.{layer_id}.mlp.experts.{expert_id}.{weight_name}.weight"
|
||
if ckpt_file_name not in self.moe_file_names:
|
||
self.logger.info(f"record redundant_expert: {ckpt_file_name}")
|
||
self.moe_file_names.append(ckpt_file_name)
|
||
|
||
last_device = paddle.device.get_device()
|
||
paddle.set_device("cpu")
|
||
|
||
for file_name in self.moe_file_names:
|
||
# 判断文件是否存在
|
||
if not os.path.exists(self.model_path + "/merged_tp1_state_split/" + file_name):
|
||
# self.logger.info(f"redundant_expert: {file_name} not exist.")
|
||
continue
|
||
# self.logger.info(f"redundant_expert: Loading expert weights: {file_name}.")
|
||
# self.state_dicts[file_name] = paddle.load(self.model_path + "/merged_tp1_state_split/" + file_name)
|
||
|
||
paddle.set_device(last_device)
|
||
self.logger.info("redundant_expert: Loading expert weights end.")
|
||
return True, "redundant_expert: Succeeded to loading expert weights."
|
||
except Exception as e:
|
||
message = f"redundant_expert: Failed to get weights iterator: {e}."
|
||
return False, message
|
||
|
||
def load_safetensor_fp8_from_disk(self, need_to_reload: List[Tuple[int, int]]):
|
||
"""load_safetensor_fp8_from_disk"""
|
||
"""
|
||
ernie.layers.52.mlp.experts.58.up_gate_proj.quant_weight
|
||
ernie.layers.52.mlp.experts.58.up_gate_proj.weight_scale
|
||
ernie.layers.52.mlp.experts.58.down_proj.quant_weight
|
||
ernie.layers.52.mlp.experts.58.down_proj.weight_scale
|
||
"""
|
||
up_gate_down = ["up_gate_proj", "down_proj"]
|
||
quant_weight_scale = ["quant_weight", "weight_scale"]
|
||
ckpt_name = [
|
||
(f"ernie.layers.{layer_id}.mlp.experts.{expert_id}.{proj_name}.{quant_name}")
|
||
for layer_id, expert_id in need_to_reload
|
||
for proj_name in up_gate_down
|
||
for quant_name in quant_weight_scale
|
||
]
|
||
ckpt_name_to_safetensor_file = load_ep_checkpoint(self.model_path)
|
||
hf_weights_files = list(set(ckpt_name_to_safetensor_file.values()))
|
||
state_dicts = {}
|
||
|
||
last_device = paddle.device.get_device()
|
||
paddle.set_device("cpu")
|
||
|
||
from safetensors import safe_open
|
||
|
||
for st_file in hf_weights_files:
|
||
with safe_open(st_file, framework="paddle", device="cpu") as f:
|
||
for name in f.keys():
|
||
if name in ckpt_name:
|
||
weight = f.get_tensor(name)
|
||
state_dicts[name] = paddle.Tensor(weight, zero_copy=True)
|
||
weights_list = []
|
||
for name in ckpt_name:
|
||
weights_list.append((name, state_dicts[name]))
|
||
self.cached_weights = weights_list
|
||
|
||
paddle.set_device(last_device)
|
||
return True, "load_expert_weight_from_disk_safetensor success"
|
||
|
||
|
||
def load_ep_checkpoint(model_path):
|
||
"""
|
||
load ep checkpoint
|
||
"""
|
||
file_path = os.path.join(model_path, "model.safetensors.index.json")
|
||
if not os.path.exists(file_path):
|
||
return {}
|
||
import json
|
||
|
||
with open(file_path, "r") as f:
|
||
weight_map = json.load(f)["weight_map"]
|
||
state_dict = {k: os.path.join(model_path, v) for k, v in weight_map.items()}
|
||
return state_dict
|
||
|
||
|
||
def load_model_weights_process(
|
||
rank: int,
|
||
model_dir: str,
|
||
expert_per_rank: int,
|
||
moe_layer_start_index: int,
|
||
moe_quant_type: str,
|
||
shm_uuid: str,
|
||
eplb_config: EPLBConfig,
|
||
data_conn,
|
||
mg_conn,
|
||
):
|
||
"""
|
||
load_model_weights_process
|
||
"""
|
||
import faulthandler
|
||
|
||
from setproctitle import setproctitle
|
||
|
||
setproctitle(f"eplb::async_load_model_{rank}")
|
||
faulthandler.enable()
|
||
from fastdeploy.utils import get_logger
|
||
|
||
logger = get_logger("eplb_async_loader", "eplb_{0}.log".format(rank))
|
||
logger.info("redundant_expert: load_model_weights_process start")
|
||
|
||
paddle.set_device("cpu")
|
||
ep_loader = AsyncEPLoader(
|
||
model_dir=model_dir,
|
||
rank=rank,
|
||
expert_per_rank=expert_per_rank,
|
||
moe_layer_start_index=moe_layer_start_index,
|
||
moe_quant_type=moe_quant_type,
|
||
logger=logger,
|
||
eplb_config=eplb_config,
|
||
)
|
||
|
||
while True:
|
||
ep_loader.reset()
|
||
data = mg_conn.recv()
|
||
|
||
result = True
|
||
weight_infos = []
|
||
try:
|
||
ep_loader.old_model_ep_rank_to_expert_id_list = data["old_model_ep_rank_to_expert_id_list"]
|
||
ep_loader.new_model_ep_rank_to_expert_id_list = data["new_model_ep_rank_to_expert_id_list"]
|
||
|
||
begin_time_disk = int(time.time())
|
||
success, message = ep_loader.load_experts_weight_from_disk()
|
||
begin_time_shm = int(time.time())
|
||
logger.info(
|
||
"redundant_expert: async load load_weight_from_disk, "
|
||
+ f"succ {success}, cost {begin_time_shm-begin_time_disk}s"
|
||
)
|
||
if success:
|
||
model_name = MODEL_MAIN_NAME
|
||
file_path = f"/dev/shm/{model_name}_rank_{rank}_expert_weight_{shm_uuid}"
|
||
weight_infos = save_tensor_to_shm_mem(ep_loader.cached_weights, file_path, logger)
|
||
logger.info(
|
||
"redundant_expert: async load save_tensor_to_shm_mem, "
|
||
+ f"tensor nums {len(weight_infos)}, cost {int(time.time()-begin_time_shm)}s"
|
||
)
|
||
else:
|
||
logger.error(f"redundant_expert: async load load_weight_from_disk failed, error {message}")
|
||
result = False
|
||
|
||
except Exception as e:
|
||
logger.error(f"redundant_expert: async load weights failed, rank {rank} error {e}")
|
||
result = False
|
||
weight_infos = []
|
||
finally:
|
||
request_data = {"result": result, "weights": weight_infos}
|
||
data_conn.send(request_data)
|