mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* [Intel HPU] add example benchmark scripts for hpu * Revise the code based on the copilot comments * update code based on comments * update ci ops version
54 lines
1.7 KiB
Python
54 lines
1.7 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from fastdeploy.engine.sampling_params import SamplingParams
|
|
from fastdeploy.entrypoints.llm import LLM
|
|
|
|
model_name_or_path = "ERNIE-4.5-21B-A3B-Paddle"
|
|
# model_name_or_path = "ERNIE-4.5-300B-A47B-Paddle"
|
|
|
|
# Hyperparameter settings
|
|
input_bs = 1
|
|
input_seq = None # 1000
|
|
max_out_tokens = 128
|
|
server_max_bs = 128
|
|
TP = 1
|
|
|
|
# num_gpu_blocks_override = ceil((input_seq + max_out_tokens) / 128) * server_max_bs
|
|
num_gpu_blocks_override = 2000
|
|
sampling_params = SamplingParams(max_tokens=max_out_tokens)
|
|
graph_optimization_config = {"use_cudagraph": False}
|
|
llm = LLM(
|
|
model=model_name_or_path,
|
|
tensor_parallel_size=TP,
|
|
engine_worker_queue_port=8602,
|
|
num_gpu_blocks_override=num_gpu_blocks_override,
|
|
block_size=128,
|
|
max_model_len=32768,
|
|
max_num_seqs=server_max_bs,
|
|
graph_optimization_config=graph_optimization_config,
|
|
)
|
|
|
|
if input_seq is None:
|
|
prompt = "user: who are you?"
|
|
else:
|
|
prompt = "hi " * input_seq
|
|
prompts = [prompt] * input_bs
|
|
for i in range(2):
|
|
output = llm.generate(prompts=prompts, use_tqdm=True, sampling_params=sampling_params)
|
|
|
|
print(output)
|