Files
FastDeploy/custom_ops/utils/auto_gen_w4afp8_gemm_kernel.py
Sunny-bot1 3629db4129 [Quantization] Support w4afp8 MoE dynamic quantization (#5282)
* support dynamic activation quant for w4afp8

* support dynamic w4afp8

* add test

* fix

* fix

---------

Co-authored-by: zhoutianzi666 <17801055074@163.com>
2025-12-02 18:56:16 +08:00

183 lines
6.4 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
file_dir = "./gpu_ops/w4afp8_gemm/"
gemm_template_head = """
#pragma once
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <cuda_fp16.h>
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#include <cuda_bf16.h>
#endif
#include <cute/tensor.hpp>
#include <cutlass/array.h>
#include <cutlass/cutlass.h>
#include <cutlass/numeric_conversion.h>
#include <cutlass/numeric_types.h>
"""
gemm_template_case = """
void w4afp8_gemm_M{M}_N{N}_G{GROUPSIZE}_K{K}_E{EXPERTS}_P{PADDING}_{TYPE}(
const cutlass::float_e4m3_t * weight,
const cutlass::float_e4m3_t * input,
{cutlass_type} * out,
const float *weight_scale,
const float * input_dequant_scale,
const int64_t *tokens,
const int64_t max_tokens,
cudaStream_t stream);
"""
gemm_template_cu_head = """
#include "paddle/extension.h"
#include "w4afp8_gemm_template.h"
#include "w4afp8_gemm_kernel.hpp"
"""
gemm_template_cu_template = """
void w4afp8_gemm_M{M}_N{N}_G{GROUPSIZE}_K{K}_E{EXPERTS}_P{PADDING}_{TYPE}(
const cutlass::float_e4m3_t * weight,
const cutlass::float_e4m3_t * input,
{cutlass_type} * out,
const float *weight_scale,
const float * input_dequant_scale,
const int64_t *tokens,
const int64_t max_tokens,
cudaStream_t stream) {{
constexpr static int M = {M};
constexpr static int K = {K};
constexpr static int EXPERTS = {EXPERTS};
constexpr static int TokenPackSize = {PADDING};
constexpr static int kBlockN = {N};
constexpr static int kGroupSize = {GROUPSIZE};
constexpr static int kBlockM = 128;
constexpr static int kBlockK = 128;
constexpr static int kNWarps = 4 + kBlockM / 16;
constexpr static int kStages = 5;
constexpr int kCluster = 1;
static_assert(K % kBlockK == 0);
constexpr int kTiles = K / kBlockK;
using Kernel_traits = Kernel_traits<
kBlockM, kBlockN, kBlockK, kNWarps, kStages, kTiles,
M, K, TokenPackSize, kGroupSize, kCluster, cutlass::float_e4m3_t,
{cutlass_type}>;
run_gemm<cutlass::float_e4m3_t, {cutlass_type},
Kernel_traits, M, K, EXPERTS, TokenPackSize, kGroupSize>
(weight, input, out, weight_scale, input_dequant_scale, tokens, max_tokens, stream);
}}
"""
# [M, K, Number of experts, token Padding Size, weight K group size]
gemm_case = [[256, 256, 2, 0, 128], [512, 256, 2, 0, 128]]
dtype = ["BF16"]
use_fast_compile = True
n_range = [256] if use_fast_compile else [i for i in range(16, 257, 16)]
all_cu_files = []
for type in dtype:
for case in gemm_case:
for n in n_range:
all_cu_files.append(f"w4afp8_gemm_M{case[0]}_N{n}_G{case[4]}_K{case[1]}_E{case[2]}_P{case[3]}_{type}.cu")
for file_path, empty_list, file_name_list in os.walk(file_dir):
for file_name in file_name_list:
if re.match(r"^w4afp8_gemm_M\d+_N\d+_.*\.cu$", file_name):
if file_name not in all_cu_files:
print("delete w4afp8 kernel file", file_path + file_name)
os.remove(file_path + file_name)
def get_cutlass_type(type):
if type == "BF16":
return "cutlass::bfloat16_t"
elif type == "FP16":
return "cutlass::half_t"
template_head_file = open(f"{file_dir}w4afp8_gemm_template.h", "w")
template_head_file.write(gemm_template_head)
for type in dtype:
for case in gemm_case:
for n in n_range:
template_head_file.write(
gemm_template_case.format(
M=case[0],
K=case[1],
N=n,
EXPERTS=case[2],
TYPE=type,
PADDING=case[3],
GROUPSIZE=case[4],
cutlass_type=get_cutlass_type(type),
)
)
template_cu_file = open(
f"{file_dir}w4afp8_gemm_M{case[0]}_N{n}_G{case[4]}_K{case[1]}_E{case[2]}_P{case[3]}_{type}.cu", "w"
)
template_cu_file.write(gemm_template_cu_head)
template_cu_file.write(
gemm_template_cu_template.format(
M=case[0],
K=case[1],
N=n,
EXPERTS=case[2],
TYPE=type,
PADDING=case[3],
GROUPSIZE=case[4],
cutlass_type=get_cutlass_type(type),
)
)
template_cu_file.close()
for type in dtype:
template_head_file.write("\n")
template_head_file.write(
"""#define GEMM_SWITCH_{TYPE}(_M, _K, _EXPERTS, _TokenPaddingSize, _kBlockN, _GROUPSIZE, ...) {{ \\
if (_M == 0 && _K == 0 && _EXPERTS == 0 && _TokenPaddingSize == 0 && _kBlockN == 0 && _GROUPSIZE == 0) {{ \\""".format(
TYPE=type
)
)
template_head_file.write("\n")
for case in gemm_case:
for n in n_range:
template_head_file.write(
""" }} else if (_M == {M} && _K == {K} && _EXPERTS == {EXPERTS} && _TokenPaddingSize == {PADDING} && _kBlockN == {N} && _GROUPSIZE == {GROUPSIZE}) {{ \\
w4afp8_gemm_M{M}_N{N}_G{GROUPSIZE}_K{K}_E{EXPERTS}_P{PADDING}_{TYPE}(__VA_ARGS__); \\""".format(
M=case[0], K=case[1], N=n, EXPERTS=case[2], TYPE=type, PADDING=case[3], GROUPSIZE=case[4]
)
)
template_head_file.write("\n")
template_head_file.write(
""" } else { \\
PADDLE_THROW(phi::errors::Unimplemented("W4aFp8 not supported m=%d k=%d experts=%d token_padding_size=%d kBlockN=%d groupsize=%d, please add [%d, %d, %d, %d, %d] to the gemm_case array in the custom_ops/utils/auto_gen_w4afp8_gemm_kernel.py file and recompile it\\n", _M, _K, _EXPERTS, _TokenPaddingSize, _kBlockN, _GROUPSIZE, _M, _K, _EXPERTS, _TokenPaddingSize, _GROUPSIZE)); \\
} \\
}"""
)
template_head_file.close()